Simple Variants of Non-cooperative Polymorphic P Systems

Anna Kuczik and György Vaszil

CMC 2023, Opava, August 29, 2023

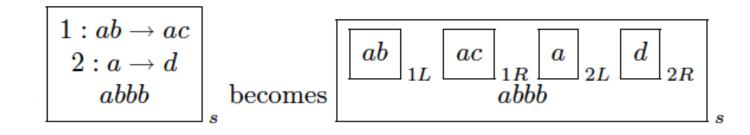
UNIVERSITY OF DEBRECEN FACULTY OF INFORMATICS

Outline

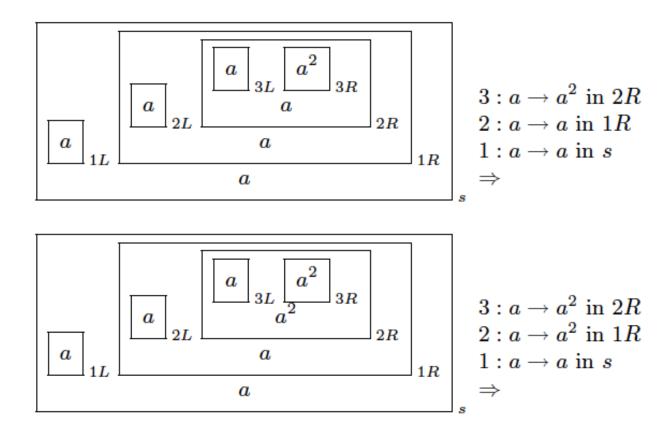
- Polymorphic P systems
 - The idea and the model
 - A few basic properties
- Polymorphic P systems with non-cooperative rules and no ingredients
- Non-cooperative polymorphic P systems with limited depth
- Non-cooperative polymorphic P systems with "finitely representable" regions

Outline – Overview of earlier results

- Polymorphic P systems
 - The idea and the model
 - A few basic properties
- Polymorphic P systems with non-cooperative rules and no ingredients
- Non-cooperative polymorphic P systems with limited depth
- Non-cooperative polymorphic P systems with "finitely representable" regions

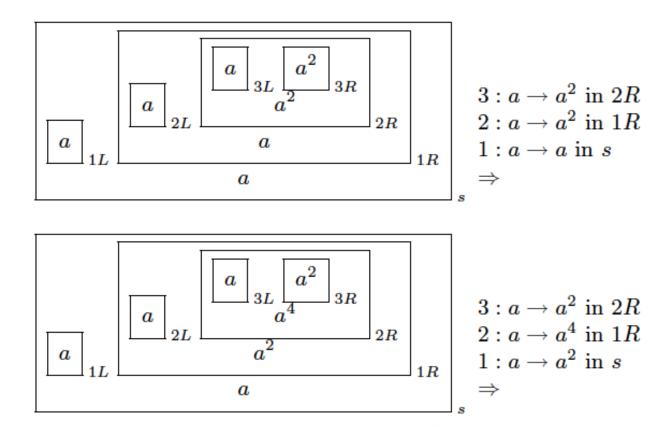

Polymorphic P systems - The idea

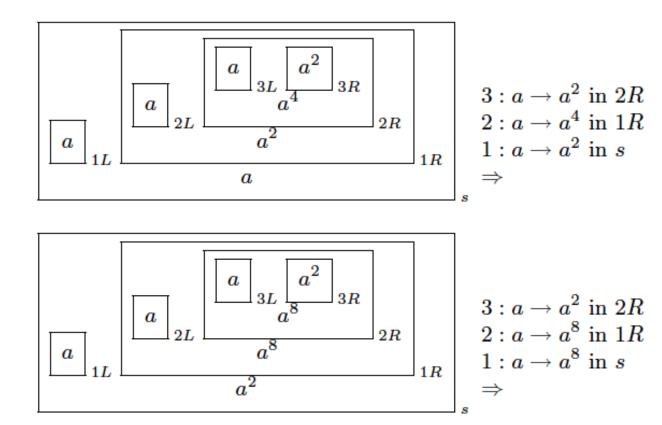
- Artiom Alhazov, Sergiu Ivanov, Yurii Rogozhin: Polymorphic P Systems. In: *CMC 2010*, Vol. 6501 of *LNCS*, pp. 81-94, 2010
- Sergiu Ivanov: Polymorphic P Systems with Non-cooperative Rules and No Ingredients. In: *CMC 2014*, Vol. 8961 of *LNCS*, pp. 258-273, 2014



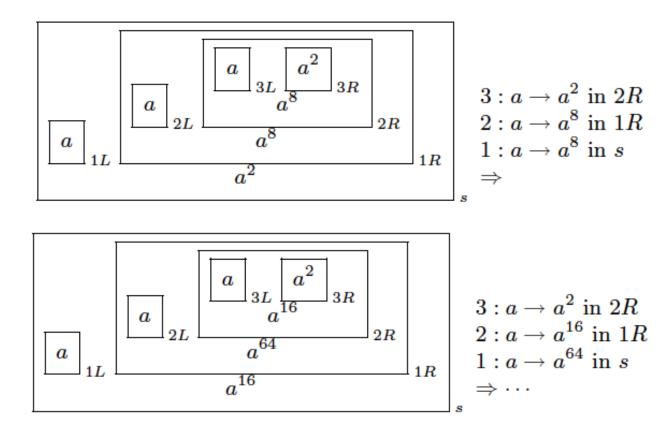
Polymorphic P systems - The idea

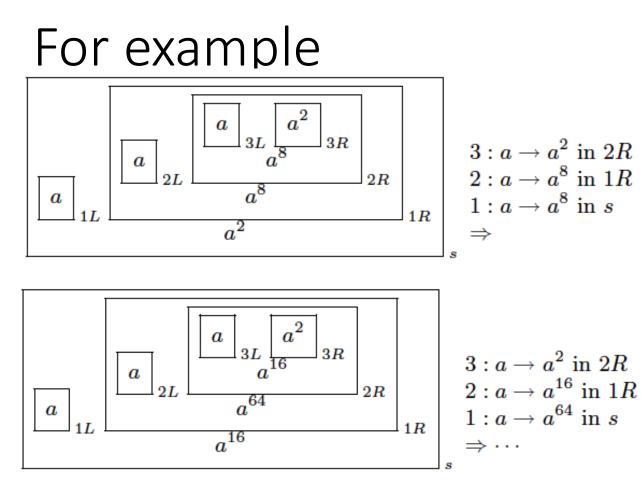
 To manipulate the rules during a computation: represent them as data





UNIVERSITY OF DEBRECEN




UNIVERSITY OF DEBRECEN

$$(2, 2^n, 2^{n(n-1)/2}, 2^{n(n-1)(n-2)/6})$$

UNIVERSITY OF DEBRECEN

Notation

 $\begin{array}{l} (D) OP_k(polym_{+d}(coo),tar)\\ NOP_k(polym_{+d}(coo),tar), \ PsOP_k(polym_{+d}(coo),tar), \end{array} \end{array}$

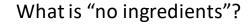
- Numbers, vectors
- The number of regions
- Rule "disabling"
- Cooperating, non-cooperating rules
- Target indicators

Theorem 2. There exist

- A strongly universal P system from $OP_{47}(polym_{-d}(coo))$;
- A P system $\Pi_1 \in DOP_7(polym_{-d}(ncoo))$ with a superexponential growth;
- A P system $\Pi_2 \in OP_{13}(polym_{-d}(ncoo), tar)$ such that $N(\Pi_2) = \{n! \cdot n^k \mid n \ge 1, k \ge 0\}$ and the time complexity of generating $n! \cdot n^k$ is n + k + 1;
- A P system $\Pi_3 \in OP_9(polym_{-d}(coo), tar)$ such that $N(\Pi_3) = \{n! \mid n \ge 1\}$ and the time complexity of generating n! is n + 1;
- A P system $\Pi_4 \in OP_{15}(polym_{-d}(ncoo), tar)$ such that $N(\Pi_4) = \{2^{2^n} \mid n \geq 0\}$ and the time complexity of generating 2^{2^n} is 3n + 2;
- A P system $\Pi'_5 \in DOP_*(polym_{-d}(coo), tar)$ such that $f(\Pi_5) = (n \longrightarrow 2^{2^n})$ and the time complexity of computing $n \longrightarrow 2^{2^n}$ is O(n);
- A P system $\Pi_6 \in DOP_*(polym_{-d}(coo), tar)$ such that $N_d(\Pi_6) = \{n! \mid n \geq 1\}$ and the complexity of deciding any number k, $k \leq n!$ does not exceed 4n.

Moreover, polymorphic P systems can grow faster than any non-polymorphic P systems, whereas even non-cooperative polymorphic P systems with targets can grow faster than any polymorphic P systems without targets.

Outline – Overview of earlier results


- Polymorphic P systems
 - The idea and the model
 - A few basic properties
- Polymorphic P systems with non-cooperative rules and no ingredients
- Non-cooperative polymorphic P systems with limited depth
- Non-cooperative polymorphic P systems with "finitely representable" regions

Systems with non-cooperative rules

- Artiom Alhazov, Sergiu Ivanov, Yurii Rogozhin: Polymorphic P Systems. In: *CMC 2010*, Vol. 6501 of *LNCS*, pp. 81-94, 2010
- Sergiu Ivanov: Polymorphic P Systems with Non-cooperative Rules and No Ingredients.
 In: CMC 2014, Vol. 8961 of LNCS, pp. 258-273, 2014

Variants of non-cooperativity

- Strong non-cooperative systems: left membranes contain at most one symbol
- Weak non-cooperative systems: all rules which are actually applied have one symbol on their left-hand side

Theorem 2. $NOP_*(polym_{+d}(ncoo_w)) = NOP_*(polym_{+d}(ncoo_s)).$

Rule disabling doesn't matter

Proposition 1. $NOP_*(polym_{-d}(ncoo)) = NOP_*(polym_{+d}(ncoo)).$

Left polymorphism

- In general, as a consequence of certain lemmas: left membranes with "static rules" are sufficient
- Left polymorphic systems are more powerful than conventional transition P systems, but they cannot generate everything:

Proposition 2. $L_{2^n} = \{2^n \mid n \in \mathbb{N}\} \in NOP_*(lpolym(ncoo)).$

Proposition 3. $L_{n!} = \{n! \mid n \in \mathbb{N}\} \notin NOP_*(lpolym_{+d}(ncoo)).$

A depth-based hierarchy

Theorem 4. $L_{d+1} = \left\{ 2^{\binom{n}{d-1}} \mid n \in \mathbb{N}, n > d \right\} \notin NOP^d_*(polym(ncoo)), d > 1.$

Corollary 3. $NOP^d_*(polym(ncoo)) \subsetneq NOP^{d+1}_*(polym(ncoo))$.

As a consequence for left polymorphic systems:

Corollary 4. $NOP_*(lpolym(ncoo)) \subsetneq NOP_*(polym(ncoo))$.

(since for left polymorphic systems, depth 3 is sufficient to reach their maximal power)

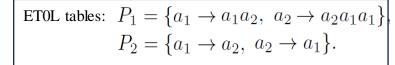
Outline – Our results

- Polymorphic P systems
 - The idea and the model
 - A few basic properties
- Polymorphic P systems with non-cooperative rules and no ingredients
- Non-cooperative polymorphic P systems with limited depth
- Non-cooperative polymorphic P systems with "finitely representable" regions

Non-cooperative polymorphic P systems with limited depth

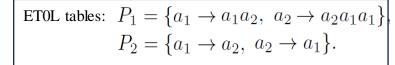
Theorem: $PsET0L \subseteq \mathcal{L}(NOP^3(polym, ncoo))$.

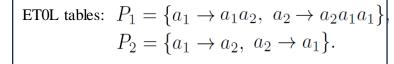
Proof idea – an example


The membrane system:

The ETOL system:	$14:\bar{a}_1\rightarrow a_1^1a_2^1$	$2: b \rightarrow a'_1$	$7: b o ar{a}_1$
G = (V, T, U, w) $V = T = \{a_1, a_2\},$	$15: \overline{a}_1 \to a_2^1$ $16: \overline{a}_2 \to a_2^0 a_1^0 a_1^0$ $17: \overline{a}_2 \to a_2^0$	$\begin{array}{l} 3:a_1' \rightarrow a_2' \\ 4:a_2' \rightarrow c \end{array}$	$8: \bar{a}_1 \to \bar{a}_2$ $9: \bar{a}_2 \to c$
$v = 1 - [a_1, a_2],$ $w = a_1 a_2,$ $U = (P_1, P_2),$	$17: \overline{\bar{a}}_2 \to a_1^0$ $18: a_1^1 \to a_1^0$	$5: c \to b$ $6: b \to d$	$10: b \to \overline{\bar{a}}_1$ $11: \overline{\bar{a}}_1 \to \overline{\bar{a}}_2$
$P_1 = \{a_1 \to a_1 a_2, \ a_2 \to a_2 a_1 a_1\}$	$19: a_1^0 \to a_1'$ $20: a_2^1 \to a_2^0$	ь	$12: \bar{\bar{a}}_1 \to c$ $13: c \to b$
$P_2 = \{a_1 \to a_2, a_2 \to a_1\}.$	$21: a_2^0 \to a_2'$		$\begin{bmatrix} 13: c \to 0 \\ b \end{bmatrix}$
	$a_1'a_2'$	IL	IR

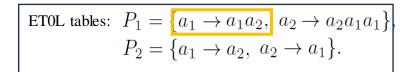
Step	Rule 1	Contents
		of the Skin
1.	$b \rightarrow b$	$a_1^\prime a_2^\prime$
2.	$a_1' \to \bar{a}_1$	$a_1^\prime a_2^\prime$
3.	$a_2' \to \bar{a}_2$	$\bar{a}_1 a'_2$
4.	$c \rightarrow c$	$a_1^1 a_2^1 ar{a}_2$
5.	$b \rightarrow b$	$a_1^0 a_2^0 a_2^0 a_1^0 a_1^0$
6.	$a_1' \to \bar{a}_1$ or	$a_1^\prime a_2^\prime a_2^\prime a_1^\prime a_1^\prime$
	$a_1' \to \bar{\bar{a}}_1$	


14	$: \bar{a}_1 \rightarrow a_1^1 a_2^1$	(2) $b \rightarrow a'_1$	$(7) b \rightarrow \overline{a}_1$
15 :	$: \bar{\bar{a}}_1 \rightarrow a_2^1$	$\begin{array}{c} (\underline{2}, e^{-\gamma} a_1) \\ 3: a_1' \to a_2' \end{array}$	$8:\bar{a}_1\to\bar{a}_2$
16	$: \bar{a}_2 \to a_2^0 a_1^0 a_1^0$	$4:a_2'\to c$	$9: \bar{a}_2 \to c$
17 :	$: \bar{\bar{a}}_2 \to a_1^0$	$5:c\to b$	(10): $b \to \bar{a}_1$
18	$: a_1^1 \rightarrow a_1^0$	$6: b \rightarrow d$	$10. \ b \to a_1$ $11: \bar{a}_1 \to \bar{a}_2$
	$a_1^0 \rightarrow a_1'$	$0: v \to u$	$12:\bar{\bar{a}}_1 \to c$
20	$: a_2^1 \rightarrow a_2^0$	Ь	
21	$: a_2^0 \rightarrow a_2'$		$13: c \rightarrow b$
	-		
	u'_2	IL	IR

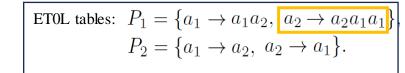

Step	Rule 1	Contents
		of the Skin
1.	$b \rightarrow b$	$a_1^\prime a_2^\prime$
2.	$a_1' \to \bar{a}_1$	$a_1^\prime a_2^\prime$
3.	$a_2' \to \bar{a}_2$	$\bar{a}_1 a'_2$
4.	$c \rightarrow c$	$a_1^1 a_2^1 ar{a}_2$
5.	$b \rightarrow b$	$a_1^0 a_2^0 a_2^0 a_1^0 a_1^0$
6.	$a_1' \to \bar{a}_1$ or	$a_1^\prime a_2^\prime a_2^\prime a_1^\prime a_1^\prime$
	$a_1' \to \bar{\bar{a}}_1$	

$14: \bar{a}_1 \to a_1^1 a_2^1 \qquad \qquad$	
$\begin{pmatrix} 14:a_1 \to a_1^* a_2^* \\ (2) b \to a_1' \end{pmatrix} \begin{pmatrix} \overline{7} b \to \overline{a}_1 \\ \overline{7} b \to \overline{a}_1 \end{pmatrix}$))
$15: \bar{a}_1 \to a_2^1 \qquad \qquad 3: a_1' \to a_2' \qquad \qquad 8: \bar{a}_1 \to \bar{a}_2$	
$16: \bar{a}_2 \to a_2^0 a_1^0 a_1^0 \qquad 4: a_2' \to c \qquad 9: \bar{a}_2 \to c$	
$17: \bar{\bar{a}}_2 \to a_1^0 \qquad 5: c \to b \qquad 10: b \to \bar{\bar{a}}_1$	
$\begin{vmatrix} 18:a_1^1 \to a_1^0 \\ 19:a_1^0 \to a_1' \end{vmatrix} \qquad \begin{vmatrix} 6:b \to d \\ 12:\bar{a}_1 \to c \end{vmatrix}$	
$20: a_2^1 \to a_2^0 \qquad b$	
$21: a_2^0 \to a_2'$ $13: c \to b$	
$a_1'a_2'$	

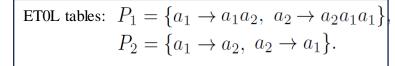
Step	Rule 1	Contents
		of the Skin
1.	$b \rightarrow b$	$a_1^\prime a_2^\prime$
2.	$a_1' \rightarrow \bar{a}_1$	$a_1^\prime a_2^\prime$
3.	$a_2' \to \bar{a}_2$	$\bar{a}_1 a'_2$
4.	$c \rightarrow c$	$a_1^1a_2^1ar{a}_2$
5.	$b \rightarrow b$	$a_1^0 a_2^0 a_2^0 a_1^0 a_1^0$
6.	$a_1' \to \bar{a}_1$ or	$a_1'a_2'a_2'a_1'a_1'$
	$a_1' \to \bar{\bar{a}}_1$	



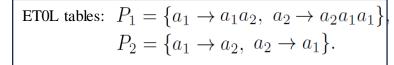
Step	Rule 1	Contents
		of the Skin
1.	$b \rightarrow b$	$a_1^\prime a_2^\prime$
2.	$a_1' \to \bar{a}_1$	$a_1^\prime a_2^\prime$
3.	$a_2' ightarrow ar{a}_2$	$\bar{a}_1 a'_2$
4.	$c \rightarrow c$	$a_1^1 a_2^1 ar{a}_2$
5.	$b \rightarrow b$	$a_1^0 a_2^0 a_2^0 a_1^0 a_1^0$
6.	-	$a_1^\prime a_2^\prime a_2^\prime a_1^\prime a_1^\prime$
	$a_1' \to \bar{\bar{a}}_1$	


$(14): \overline{a}_1 \to a_1^1 a_2^1$	$2: b \rightarrow a'_1$	$(7:b \rightarrow \overline{a}_1)$
$15:\bar{\bar{a}}_1\to a_2^1$	$3:a_1' ightarrow a_2'$	$8:\bar{a}_1\to\bar{a}_2$
$16: \bar{a}_2 \to a_2^0 a_1^0 a_1^0$	(4) $a'_2 \rightarrow c$	(9) $\bar{a}_2 \rightarrow c$
$17: \bar{\bar{a}}_2 \to a_1^0$	$5: c \rightarrow b$	
		$10: b \to \overline{\overline{a}}_1$
$18:a_1^1 \to a_1^0$	$6:b \rightarrow d$	$11:\bar{\bar{a}}_1\to\bar{\bar{a}}_2$
$19:a_1^0\to a_1'$		$12:\bar{\bar{a}}_1\to c$
$20:a_2^1\to a_2^0$	a_2'	
$21:a_2^0\to a_2'$		$13: c \rightarrow b$
		\overline{a}_2
$\overline{a_1a_2'}$		
		S

Step	Rule 1	Contents
		of the Skin
1.	$b \rightarrow b$	$a_1^\prime a_2^\prime$
2.	$a_1' \to \bar{a}_1$	$a_1^\prime a_2^\prime$
3.	$a_2' \to \bar{a}_2$	$\bar{a}_1 a'_2$
4.	$c \rightarrow c$	$a_1^1a_2^1ar{a}_2$
5.	$b \rightarrow b$	$a_1^0 a_2^0 a_2^0 a_1^0 a_1^0$
6.	$a_1' \to \bar{a}_1$ or	$a_1^\prime a_2^\prime a_2^\prime a_1^\prime a_1^\prime$
	$a_1' \to \bar{\bar{a}}_1$	


$14: \bar{a}_1 \to a_1^1 a_2^1$	$2: b \rightarrow a'_1$	$(7:b \rightarrow \overline{a}_1)$
$15:\bar{\bar{a}}_1\to a_2^1$	$3:a_1' \rightarrow a_2'$	$8: \bar{a}_1 \rightarrow \bar{a}_2$
(16): $\bar{a}_2 \to a_2^0 a_1^0 a_1^0$	$4: a'_2 \rightarrow c$	$9: \bar{a}_2 \rightarrow c$
$17:\bar{a}_2\to a_1^0$	$(5) c \rightarrow b$	
		$10: b \to \overline{\overline{a}}_1$
$(18): a_1^1 \to a_1^0$	$6:b \rightarrow d$	$11:\bar{a}_1\to\bar{a}_2$
$19:a_1^0\to a_1'$		$12:\bar{a}_1\to c$
(20): $a_2^1 \rightarrow a_2^0$	c	
$21: a_2^0 \to a_2'$		$(13) \ c \to b$
$\boxed{a_1^1 a_2^1 \bar{a}_2}$		
		S

Step	Rule 1	Contents
		of the Skin
1.	$b \rightarrow b$	$a_1^\prime a_2^\prime$
2.	$a_1' \to \bar{a}_1$	$a_1^\prime a_2^\prime$
3.	$a_2' \to \bar{a}_2$	$\bar{a}_1 a'_2$
4.	$c \rightarrow c$	$a_1^1a_2^1ar{a}_2$
5.	$b \rightarrow b$	$a_1^0 a_2^0 a_2^0 a_1^0 a_1^0$
6.	$a_1' \to \bar{a}_1$ or	$a_1'a_2'a_2'a_1'a_1'$
	$a_1' \to \bar{\bar{a}}_1$	


$14: \bar{a}_1 \to a_1^1 a_2^1$	(2) $b \rightarrow a'_1$	$(7) b \rightarrow \overline{a}_1$
$15:\bar{\bar{a}}_1\to a_2^1$	$3: a'_1 \rightarrow a'_2$	$8:\bar{a}_1\to\bar{a}_2$
$16: \bar{a}_2 \to a_2^0 a_1^0 a_1^0$	$4:a_2'\to c$	$9: \bar{a}_2 \to c$
$17:\bar{\bar{a}}_2 \to a_1^0$	$5:c\to b$	
		$(10): b \to \overline{\bar{a}}_1$
$18:a_1^1 \to a_1^0$	$6:b \rightarrow d$	$11:\bar{\bar{a}}_1\to\bar{\bar{a}}_2$
(19): $a_1^0 ightarrow a_1'$		$12:\bar{\bar{a}}_1 \to c$
$20:a_2^1 \rightarrow a_2^0$	b	
(21): $a_2^0 \rightarrow a_2'$		$13: c \rightarrow b$
$\sqrt{\left[a_{1}^{0}a_{2}^{0}a_{2}^{0}a_{1}^{0}a_{1}^{0} ight]}$		
	12	S

Step	Rule 1	Contents
		of the Skin
1.	$b \rightarrow b$	$a_1^\prime a_2^\prime$
2.	$a_1' \to \bar{a}_1$	$a_1^\prime a_2^\prime$
3.	$a_2' \to \bar{a}_2$	$\bar{a}_1 a'_2$
4.	$c \rightarrow c$	$a_1^1a_2^1ar{a}_2$
5.	$b \rightarrow b$	$a_1^0 a_2^0 a_2^0 a_1^0 a_1^0$
6.	$a_1' \to \bar{a}_1$ or	$a_1^\prime a_2^\prime a_2^\prime a_1^\prime a_1^\prime$
	$a_1' \to \bar{\bar{a}}_1$	

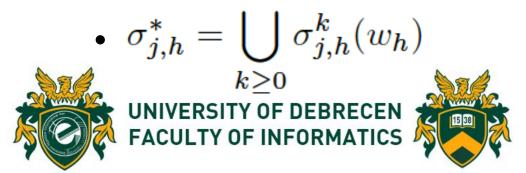
($14:\bar{a}_1\rightarrow a_1^1a_2^1$	$2: b \rightarrow a'_1$	$7: b \rightarrow \overline{a}_1$
	$15:\bar{a}_1\to a_2^1$	$3: a'_1 \rightarrow a'_2$	$8:\bar{a}_1\to\bar{a}_2$
	$16: \bar{a}_2 \to a_2^0 a_1^0 a_1^0$	$4:a_2'\to c$	$9: \bar{a}_2 \to c$
	$17:\bar{\bar{a}}_2 \to a_1^0$	$5:c \rightarrow b$	
			$10:b \to \overline{\bar{a}}_1$
	$18:a_1^1\to a_1^0$	$6:b \rightarrow d$	$11:\bar{\bar{a}}_1\to\bar{\bar{a}}_2$
	$19:a_1^0\to a_1'$		$12:\bar{a}_1\to c$
	$20:a_2^1\to a_2^0$	b	
	$21:a_2^0\to a_2'$		$13: c \rightarrow b$
	$a_1^0a_2^0a_2^0a_1^0a_1^0$	11	b IR

Outline – Our results

- Polymorphic P systems
 - The idea and the model
 - A few basic properties
- Polymorphic P systems with non-cooperative rules and no ingredients
- Non-cooperative polymorphic P systems with limited depth
- Non-cooperative polymorphic P systems with "finitely representable" regions

Systems with finite sets of instances of dynamic rules

- Non-cooperative rules → Left-membranes have finitely many possible membrane contents in any computation
- →left-membranes are always "finitely representable"
- What about "finitely representable" right-membranes?


Finite representabilty

$$\Pi = (O, T, \mu, w_s, \langle w_{1L}, w_{1R} \rangle, \dots, \langle w_{nL}, w_{nR} \rangle, h_o)$$

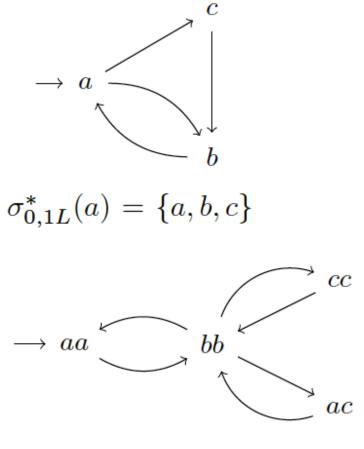
• If w_h is the contents of **region** *h* after the *j*-th step of a computation, and w'_h can be obtained from w_h in the **next** computational step:

$$w'_h \in \sigma_{j,h}(w_h)$$

• and
$$\sigma_{j,h}^0(w_h) = w_h$$
,
 $\sigma_{j,h}^{k+1} = \sigma_{j+k,h}(\sigma_{j,h}^k(w_h))$ (set of contents obtainable in k+1 steps)

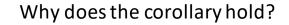
Finite representability

Region *h* is FIN-representable if the set of successor multisets of the initial contents w_h of region *h* is finite.

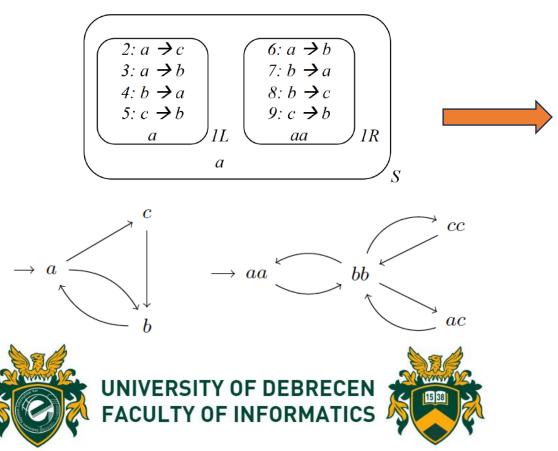

 \rightarrow if $\sigma^*_{0,h}(w_h)$ is finite

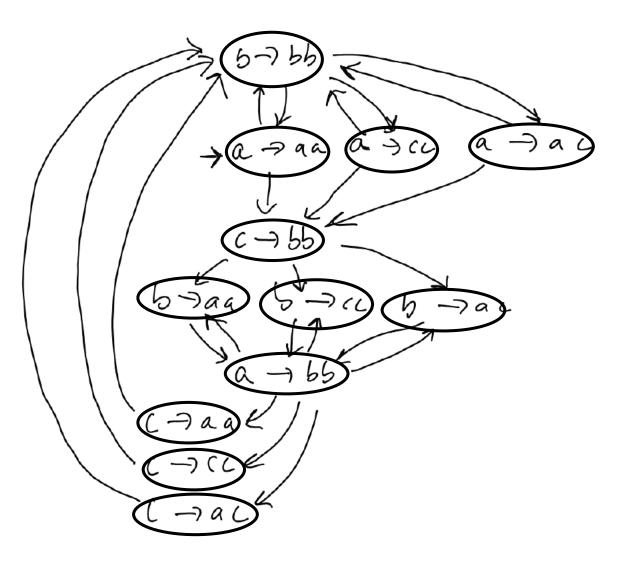
FIN-representability, an example

$$\begin{array}{c}
2:a \neq c \\
3:a \neq b \\
4:b \neq a \\
5:c \neq b \\
a \\
\end{array} \\
IL
\end{array}
\begin{array}{c}
6:a \neq b \\
7:b \neq a \\
8:b \neq c \\
9:c \neq b \\
aa \\
IR
\end{array}$$


 $\sigma^*_{0,1R}(aa) = \{aa, bb, cc, ac\}$

Region S is not FIN-representable

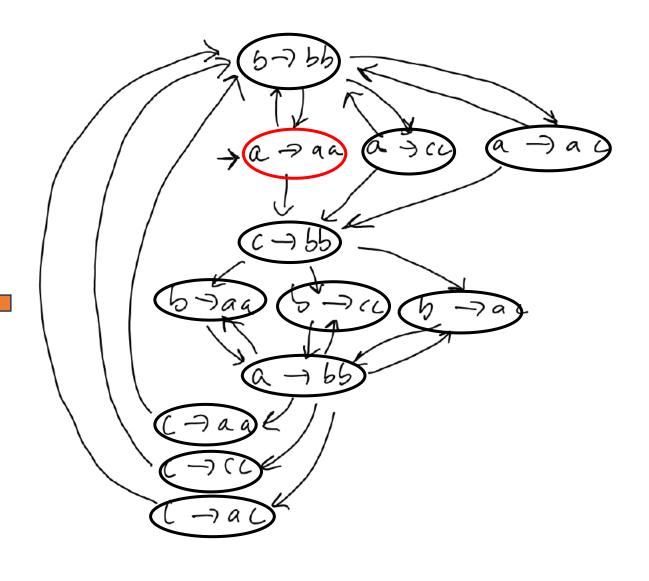

A characterization of *PsETOL*


Theorem: $\mathcal{L}(NOP(polym), ncoo, fin)) \subseteq PsET0L.$ Corollary: $\mathcal{L}(NOP(polym), ncoo, fin)) = PsET0L.$

We can construct the **finite set** of instances of **rule 1**:

The **construction** of the *ETOL* **tables**:

- initial string: $d_a \rightarrow aa a$
- the table: $a \rightarrow aa$

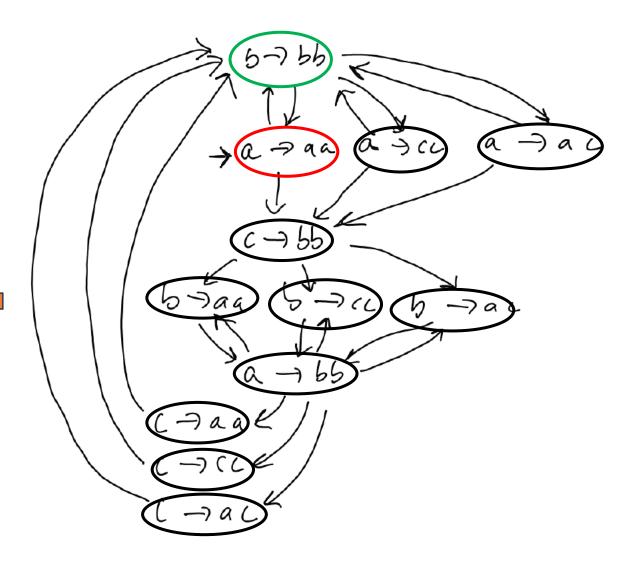

$$d_{a \rightarrow aa} \rightarrow d_{b \rightarrow bb}$$

$$d_{a \rightarrow aa} \rightarrow d_{c \rightarrow bb}$$

$$d_{x \rightarrow yz} \rightarrow F$$

$$F \rightarrow F$$

- The **construction** of the *ETOL* **tables**:
- after the 1st step: $d_b \rightarrow bb$ aa
- the table: $a \rightarrow aa$


$$d_{a \rightarrow aa} \rightarrow d_{b \rightarrow bb}$$

$$d_{a \rightarrow aa} \rightarrow d_{c \rightarrow bb}$$

$$d_{x \rightarrow yz} \rightarrow F$$

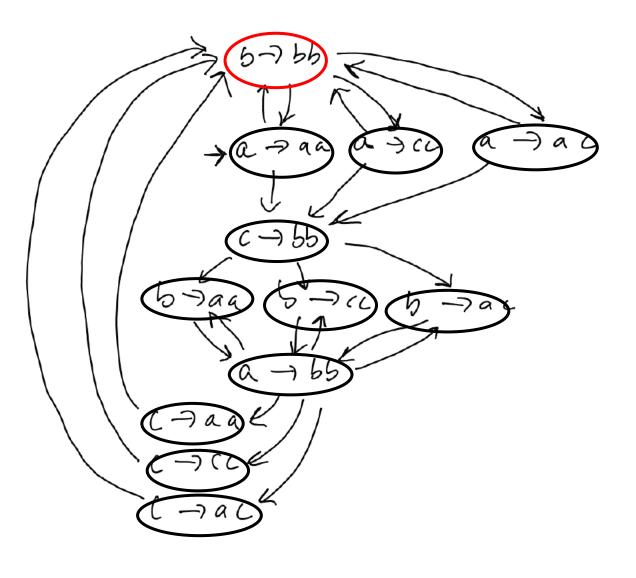
$$F \rightarrow F$$

- The **construction** of the *ETOL* **tables**:
- after the 1st step: $d_b \rightarrow bb$ aa
- the table: $b \rightarrow bb$

$$d_{b \rightarrow bb} \rightarrow d_{a \rightarrow aa}$$

$$d_{b \rightarrow bb} \rightarrow d_{a \rightarrow cc}$$

$$d_{b \rightarrow bb} \rightarrow d_{a \rightarrow ac}$$


$$d_{x \rightarrow yz} \rightarrow F$$

$$F \rightarrow F$$

UNIVERSITY OF DEBRECEN FACULTY OF INFORMATICS

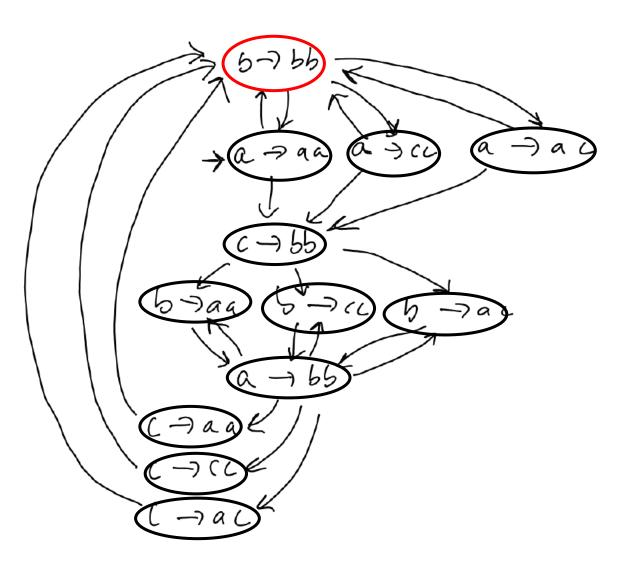
- The **construction** of the *ETOL* **tables**:
- after the 1st step: $d_b \rightarrow bb$ aa
- the table: $b \rightarrow bb$

$$d_{b \rightarrow bb} \rightarrow d_{a \rightarrow aa}$$

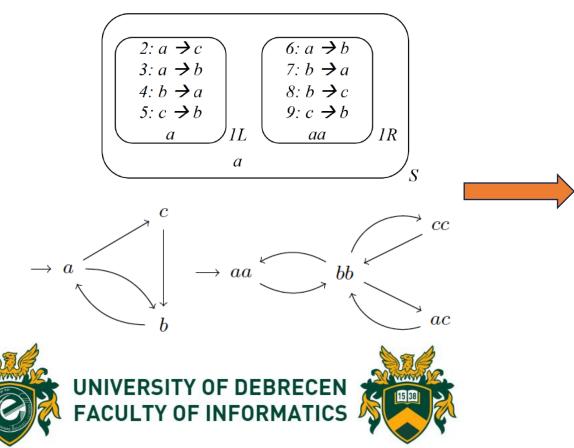
$$d_{b \rightarrow bb} \rightarrow d_{a \rightarrow cc}$$

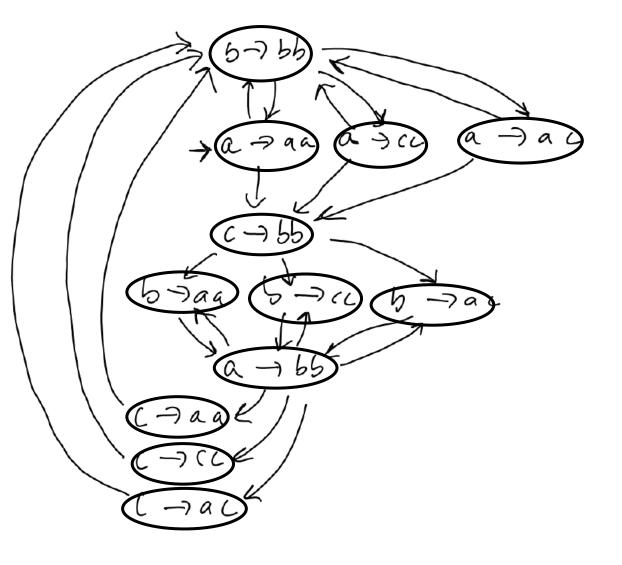
$$d_{b \rightarrow bb} \rightarrow d_{a \rightarrow cc}$$

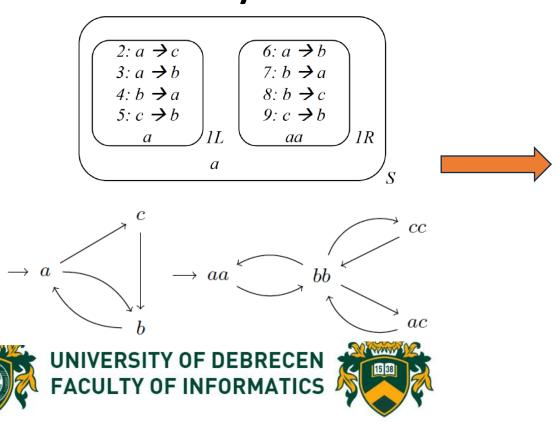
$$d_{b \rightarrow bb} \rightarrow d_{a \rightarrow ac}$$

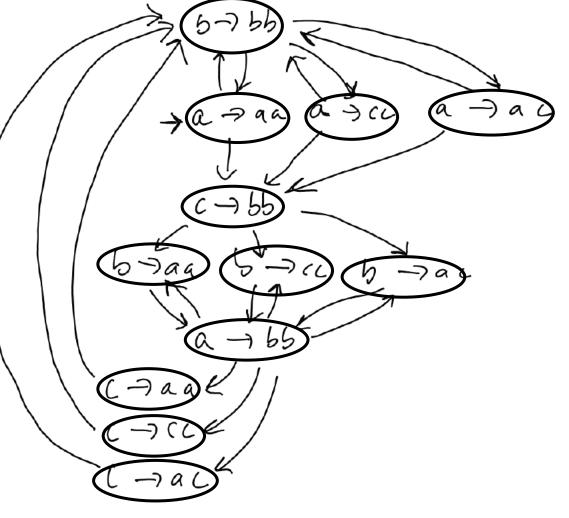

$$d_{x \rightarrow yz} \rightarrow F$$

$$F \rightarrow F \text{ and so on...}$$


UNIVERSITY OF DEBRECEN FACULTY OF INFORMATICS




If we have two dynamic rules...


...we can **construct** the finite set of instances of **rule pairs**

If we have several dynamic rules... ...we can construct the finite set of instances of groups of rules that can be applied simultaneously

Outline

- Polymorphic P systems
 - The idea and the model
 - A few basic properties
- Polymorphic P systems with non-cooperative rules and no ingredients
- Non-cooperative polymorphic P systems with limited depth
- Non-cooperative polymorphic P systems with "finitely representable" regions
 - \rightarrow a characterization of *PsETOL*

Thank you.