

Proceedings of the Twenty-fourth
International Conference
on Membrane Computing

(CMC2023)

28-31 August 2023
Opava, Czech Republic

Lucie Ciencialová
editor

Proceedings of the 24th International Conference on Membrane Computing (CMC2023)
Edited by: Lucie Ciencialová
©Authors of the contributions, 2023
Published in August 2023

Preface

The present volume contains the invited contributions and a selection of papers presented
at the 24th Conference on Membrane Computing(CMC2023), held in Opava, Czech
Republic from August 28 to August 31, 2023. Further additional information on this
conference can be found at the following website: http://cmc2023.slu.cz

The CMC series started with three workshops organized in Curtea de Arges, Romania,
in 2000, 2001 and 2002. The workshops were then held in Tarragona, Spain (2003),
Milan, Italy (2004), Vienna, Austria (2005), Leiden, TheNetherlands(2006), Thessaloniki,
Greece (2007), and Edinburgh, UK (2008). The 10th edition was organized again in
Curtea de Arges, in August 2009, where it was decided to continue the series as the
Conference on Membrane Computing (CMC). The following editions were held in Jena,
Germany (2010),Fontainebleau, France (2011), Budapest, Hungary (2012), Chisinau,
Moldova (2013), Praha, Czech Republic (2014), Valencia, Spain (2015) and Milan,
Italy(2016), Bradford, UK(2017), Dresden, Germany (2018), Curtea de Arges, Romania
(2019). Due to the pandemic caused by the Corona virus, the two main conferences
organized annually by the Membrane Computing community through IMCS, Asian
Conference onMembrane Computing (ACMC) and Conference onMembrane Computing
(CMC) were united in one joint conference, online-only conference (2020) and Chengdu,
China and Debrecen, Hungary (2021). CMC23 was helt in Trieste, Italy in 2022.

CMC2023 has been organized, under the auspices of the International Membrane
Computing Society, and the European Molecular Computing Consortium by Institute of
Computer Science, Faculty of Philosophy and science, the Silesian Univerzity in Opava,
Czech Republic.

The invited lectures were given by Artiom Alhazov (Chisinau, Moldova) and José
M. Sempere Luna (Valencia, Spain). The editors express their gratitude to the Program
Committee, the invited speakers, the authors of the papers, the reviewers, and all the
participants for their contributions to the success of CMC2023. The support of the
Faculty of Philosophy and Science, the Silesian University in Opava, sponzors Compacer,
ICZ and Jettimodel are gratefully acknowledged.

August 2023 Lucie Ciencialová
Program Chair

CMC 2023

Organization

Steering Committee of CMC series

Henry Adorna Quezon City, Philippines
Artiom Alhazov Chis, inău, Moldova
Bogdan Aman Ias, i, Romania
Matteo Cavaliere Manchester, UK
Erzsébet Csuhaj-Varjú Budapest, Hungary
Giuditta Franco Verona, Italy
Rudolf Freund Wien, Austria
Marian Gheorghe Bradford, UK - Honorary member
Thomas Hinze Cottbus, Germany
Florentin Ipate Bucharest, Romania
Shankara N. Krishna Bombay, India
Alberto Leporati Milan, Italy
Ferrante Neri Nottingham, UK
Taishin Y. Nishida Toyama, Japan
Linqiang Pan Wuhan, China – co-chair
Gheorghe Păun Bucharest, Romania - Honorary member
Mario J. Pérez-Jiménez Sevilla, Spain
Agustín Riscos-Núñez Sevilla, Spain
Jose M. Sempere Valencia, Spain
Petr Sosík Opava, Czech Republic
K. G. Subramanian Chennai, India
György Vaszil Debrecen, Hungary
Sergey Verlan Paris, France
Claudio Zandron Milan, Italy – co-chair
Gexiang Zhang Chengdu, China

Organizing Committee of CMC 2023

Luděk Cienciala - chair
Kateřina Bissell
Lucie Ciencialová
Kamil Matula
Anna Novotná
Šárka Vavrečková
Petr Sosík

VII

Program Committee of CMC 2023

Henry Adorna Quezon City, Philippines
Artiom Alhazov Chis, inău, Moldova
Bogdan Aman Ias, i, Romania
Lucie Ciencialová Opava, Czech Republic - chair
Erzsébet Csuhaj-Varjú Budapest, Hungary
Giuditta Franco Verona, Italy
Thomas Hinze Cottbus, Germany
Florentin Ipate Bucharest, Romania
Sergiu Ivanov Paris, France
Alberto Leporati Milan, Italy
Luca Manzoni Trieste, Italy
David Orellana-Martín Seville, Spain
Antonio Enrico Porreca Marseille, France
Mario Pérez-Jiménez Sevilla, Spain
Agustín Riscos-Núñez Sevilla, Spain
Jose M. Sempere Valencia, Spain
Petr Sosík Opava, Czech Republic
K.G. Subramanian Chennai, India
György Vaszil Debrecen, Hungary
Sergey Verlan Paris, France
Claudio Zandron Milan, Italy
Gexiang Zhang Chengdu, China

Table of Contents

I Invited talks

Towards an Online Simulator Exploring Non-Deterministic Networks of Cells . . 3
Artiom Alhazov

Membrane computing: A wonderful framework for systems and computational
biology . 4

José M. Sempere

II Regular papers

Simple P systems with Prescribed Teams of Sets of Rules 7
Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

P Systems with Reactive Membranes . 27
Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, David Orellana-Martín,
Antonio Ramírez-de-Arellano, José Antonio Rodríguez Gallego

Queens of the Hill . 43
Artiom Alhazov1, Sergiu Ivanov2, David Orellana-Martín3,4

Pure 2D Eilenberg P Systems . 56
Somnath Bera, Atulya K. Nagar, K.G. Subramanian, and Gexiang Zhang

Solving QUBO problems with cP systems . 67
Lucie Ciencialová , Michael J. Dinneen , Radu Nicolescu, and Luděk
Cienciala

Implementing Perceptrons by Means of Water Based Computing 79
Nicoló Civiero, Alec Henderson, Thomas Hinze, Radu Nicolescu, and
Claudio Zandron

Conditional Uniport P Systems with Two Cells . 97
Erzsébet Csuhaj-Varjú and Sergey Verlan

Simple Variants of Non-cooperative Polymorphic P Systems 127
Anna Kuczik and György Vaszil

Randomly walking with PDP systems . 143
David Orellana-Martín, José A. Andreu-Guzmán, Carmen Graciani,
Agustín Riscos-Núñez, and Mario J. Pérez-Jiménez

IX

Solving the SAT problem using spiking neural P systems with coloured spikes
and division rules . 152

Prithwineel Paul and Petr Sosík

Detecting Android Malware Using Spiking Neural P Systems 167
Mihail-Iulian Ples,a*, Marian Gheoghe, Florentin Ipate, and Gexiang
Zhang

On 2D P Colony Simulator . 177
Daniel Valenta and Miroslav Langer

III Informal talks

SNP Systems with Astrocytes Producing Calcium: Power and Efficiency 193
Bogdan Aman and Gabriel Ciobanu

Communication Mechanisms in Networks of Reaction Systems 195
Erzsébet Csuhaj-Varjú and Pramod Kumar Sethy

Author Index . 197

X

Part I

Invited talks

Towards an Online Simulator Exploring
Non-Deterministic Networks of Cells

Artiom Alhazov

State University of Moldova,
Vladimir Andrunachievici Institute of Mathematics and Computer Science

Academiei 5, Chis, inău, MD-2028, Moldova
artiom@math.md

Abstract. Vast majority of existing simulators, given a non-deterministic P system,
either assume it is confluent, and compute the first non-deterministic choice, or
compute a random non-deterministic choice. If the goal is to examine a proof
construction, this is unacceptable. In this talk we discuss a possible approach
of an online simulator solving such a problem, and satisfying some additional
requirements. Topics mentioned include different proposals to keep such software
efficient, run it directly in the browser, cover most existing rule types and more
(e.g., capable of combining antiport with promoters/inhibitors and with spiking in
the same rule if desired, in a uniform representation) for static P systems, work
in various derivation modes, while in the same time being simple enough to
be feasible to be implemented by a single developer in some reasonable time.
Attention is paid to usefulness/conveneince to a user examining constructions from
theorems, visualization, interactivity and other features.

Membrane computing: A wonderful framework for
systems and computational biology

José M. Sempere

Departamento de Sistemas Informáticos y Computacíon (Universidad Politécnicade Valencia)
46071 Valencia, Spain jsempere@dsic.upv.es

Abstract. From the beginning, membrane computing has been a very suitable
computational model to address modeling problems in biology. In this talk, we
will show the main components that must be defined when defining digital twins of
biological elements by using membrane computing. We will show a methodology
adapted for membrane computing to the modeling of biological systems. We will
see how to define objects and rules adapted to the biological application domain,
and we will also talk about the different stochastic simulation engines. Throughout
the talk, we will show some successful cases where membrane computing has been
used for the modeling of epidemiological systems and control of physiological
markers.

Part II

Regular papers

Simple P systems with
Prescribed Teams of Sets of Rules

Artiom Alhazov1, Rudolf Freund2, and Sergiu Ivanov3

1 State University of Moldova,
Vladimir Andrunachievici Institute of Mathematics and Computer Science

Academiei 5, Chis, inău, MD-2028, Moldova
artiom@math.md

2 Faculty of Informatics, TU Wien
Favoritenstraße 9–11, 1040 Wien, Austria

rudi@emcc.at
3 IBISC, Univ. Évry, Paris-Saclay University
23, boulevard de France 91034 Évry, France

sergiu.ivanov@ibisc.univ-evry.fr

Abstract. In this paper we consider simple P systems with prescribed teams of
sets of rules, with the application of the rule sets in the teams possibly depending
on some given condition, as well as, in the general case, the different sets of rules in
a prescribed team working in different derivation modes, whereas in homogeneous
systems for all sets of rules the same derivation mode comes into action.
We prove some general results, for example, (i) how with such simple P systems
with prescribed teams of sets of rules we can simulate label controlled P systems,
where only rules with the same label can be applied, (ii) how simple purely
catalytic P systems can be mimicked by simple P systems with prescribed teams
of sets of non-cooperative rules with all sets of rules working in the sequential
derivation mode, and (iii) how simple catalytic P systems can be mimicked by
simple P systems with prescribed teams of sets of non-cooperative rules with some
sets of rules working in the sequential derivation mode and only one working in
the maximally parallel derivation mode.
Computational completeness of these simple P systems with prescribed teams of
sets of non-cooperative rules therefore immediately follows from the well-known
results for simple catalytic and purely catalytic P systems, respectively. On the
other hand, homogeneous simple P systems with prescribed teams of sets of
non-cooperative rules with all teams working in the maximally parallel derivation
mode have the same computational power as ET0L systems used for multisets.

Keywords: applicability condition, computational completeness, ET0L systems,
P systems, prescribed teams

8 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

1 Introduction

A quarter of a century ago, membrane (P) systems were introduced in [12] as a multiset-
rewriting model of computing inspired by the hierarchical membrane structure and the
functioning of the living cell, with the molecules/objects evolving in parallel. Since then,
this area of biologically motivated computing has emerged in a fascinating way. A lot of
interesting theoretical models have been developed by scientists all over the world, many
of them already documented in two textbooks, see [13] and [14]. For actual information,
we refer to the P systems webpage [16] as well as to the issues of the Bulletin of the
International Membrane Computing Society and of the Journal of Membrane Computing.

P systems traditionally operate on multisets of objects, hence, the power of non-
cooperative rules (even) when working in the maximally parallel derivation mode is
rather restricted; for example, the multiset language {b2n | n ∈ N} cannot be obtained
with non-cooperative rules by halting computations. Therefore, one of the fundamental
questions which has attracted a lot of attention in the area of P systems is, how variants
of different ways of cooperation of the rules and various control mechanisms affect the
computational power. For example, allowing for cooperative rules rather easily boosts
the power of specific variants of P systems to computational completeness.

One of the well-known control mechanisms forcing some rules to only be applied
together (in the sequential derivation mode) are matrix grammars, in which the rules are
grouped into sequences, which in the given order must be applied one after another. A
less strict variant where the rules in a set of rules called prescribed teams can be applied
in any order was introduced in [6]. In [4], such prescribed teams are working on different
objects.

In contrast to the original model, in which the rules of a team can be applied together
only sequentially, we here consider a team as a set of sets of rules, where each set of
rules has assigned (i) its own applicability condition and (ii) its own derivation mode in
which the rules in this set have to be applied, and based on one of these teams a suitable
multiset of rules to be applied to the underlying configuration is constructed.

In the model of (simple, i.e., only one membrane region is considered) P systems
with prescribed teams of sets of rules, the application of a team means applying each
set of rules in the chosen team to be used in the derivation mode assigned to the set in
this team, provided the applicability condition based on the features of the underlying
configuration is fulfilled. In internally homogenous systems, all sets of rules in a team
have assigned the same derivation mode, whereas in globally homogenous systems all
teams have assigned the same derivation mode for all sets of rules in the teams. In this
paper, we mainly focus on the sequential and the maximally parallel derivation mode;
investigations with other derivation modes, as, for example considered in the formal
framework for static P systems, see [9], or others then defined in [5,2,3,1], we leave for
future research.

One obvious result we are going to prove is that globally homogenous simple
P systems working in the maximally parallel derivation mode for the teams of sets
of non-cooperative rules have the same computational power as ET0L systems, i.e.,
extended tabled Lindenmayer systems. Simple P systems with prescribed teams of
sets of rules can simulate label controlled P systems, where only rules with the same
label can be applied. Moreover, simple purely catalytic P systems can be mimicked

Simple P systems with Prescribed Teams of Sets of Rules 9

by simple P systems with prescribed teams of sets of non-cooperative rules with the
sets of rules working in the sequential derivation mode. For the simulation of catalytic
P systems, one additional set working in the maximally parallel derivation mode is
needed. Computational completeness of these simple P systems with prescribed teams of
sets of non-cooperative rules therefore can immediately be inferred from the well-known
results for simple catalytic and purely catalytic P systems, respectively. Furthermore,
using sets of symbols as permitting and forbidden context conditions for the sets of rules
in the teams allows for an easy direct simulation of register machines, either with using
non-cooperative rules or else insertion and deletion rules.

2 Definitions

For an alphabet V , a finite non-empty set of abstract symbols, the free monoid generated
by V under the operation of concatenation, i.e., the set containing all possible strings
over V , is denoted by V ∗. The empty string is denoted by λ, and V ∗\{λ} is denoted
by V +. For an arbitrary alphabet V = {a1, . . . , an}, the number of occurrences of a
symbol ai in a string x is denoted by |x|ai , while the length of a string x is denoted by
|x| =

∑
ai∈V |x|ai . The Parikh vector associated with x with respect to a1, . . . , an is

(|x|a1 , . . . , |x|an). The Parikh image of an arbitrary language L over {a1, . . . , an} is
the set of all Parikh vectors of strings in L, and is denoted by Ps(L). For a family of
languages FL, the family of Parikh images of languages in FL is denoted by PsFL,
while for families of languages over a one-letter (d-letter) alphabet, the corresponding
sets of non-negative integers (d-vectors with non-negative components) are denoted by
NFL (NdFL).

A (finite) multiset over an alphabet V = {a1, . . . , an}, is a mapping f : V →
N and can be represented by 〈af(a1)1 , . . . , a

f(an)
n 〉 or by any string x for which

(|x|a1 , . . . , |x|an) = (f(a1), . . . , f(an)). In the following we will not distinguish
between a vector (m1, . . . ,mn), a multiset 〈am1

1 , . . . , amn
n 〉 or a string x having

(|x|a1 , . . . , |x|an) = (m1, . . . ,mn). Fixing the sequence of symbols a1, . . . , an in
an alphabet V in advance, the representation of the multiset 〈am1

1 , . . . , amn
n 〉 by the string

am1
1 . . . amn

n is unique. The set of all finite multisets over an alphabet V is denoted by
V ◦. The cardinality of a set or multisetM is denoted by |M |.

The family of regular, context-free, and recursively enumerable string languages is
denoted by L(REG), L(CF), and L(RE), respectively. As PsL(REG) = PsL(CF),
in the area of multiset rewriting L(CF) plays no role at all, and in the area of membrane
computing we often only get characterizations of PsL(REG) and PsL(RE) or else
PsL(ET0L), where L(ET0L) denotes the family of languages generated by extended
tabled Lindenmayer systems (ET0L systems).

For further notions and results in formal language theory we refer to textbooks like [7]
and [15].

2.1 Register Machines
Register machines are well-known universal devices for computing on (or generating or
accepting) sets of vectors of natural numbers. The following definitions and propositions
are given as in [1].

10 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

Definition 1. A register machine is a construct

M = (m,B, l0, lh, P)

where

– m is the number of registers,
– P is the set of instructions bijectively labeled by elements of B,
– l0 ∈ B is the initial label, and
– lh ∈ B is the final label.

The instructions ofM can be of the following forms:

– p : (ADD(r), q, s); p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.
Increase the value of register r by one, and non-deterministically jump to instruction
q or s.

– p : (SUB(r), q, s); p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.
If the value of register r is not zero then decrease the value of register r by one
(decrement case) and jump to instruction q, otherwise jump to instruction s (zero-test
case).

– lh : HALT .
Stop the execution of the register machine.

A configuration of a register machine is described by the contents of each register
and by the value of the current label, which indicates the next instruction to be executed.
M is called deterministic if the ADD-instructions all are of the form p : (ADD(r), q).

Throughout the paper, BADD denotes the set of labels of ADD-instructions p :
(ADD(r), q, s) of arbitrary registers r, and BSUB(r) denotes the set of labels of all
SUB-instructions p : (SUB(r), q, s) of a decrementable register r. Moreover, for any
p ∈ B \ {lh}, Reg(p) denotes the register affected by the ADD- or SUB-instruction
labeled by p; for the sake of completeness, in addition Reg(lh) = 1 is taken.

In the accepting case, a computation starts with the input of an l-vector of natural
numbers in its first l registers and by executing the first instruction of P (labeled by l0);
it terminates with reaching the HALT -instruction. Without loss of generality, we may
assume all registers to be empty at the end of the computation.

In the generating case, a computation starts with all registers being empty and
by executing the first instruction of P (labeled by l0); it terminates with reaching the
HALT -instruction and the output of a k-vector of natural numbers in its last k registers.
Without loss of generality, we may assume all registers except the last k output registers
to be empty at the end of the computation.

In the computing case, a computation starts with the input of an l-vector of natural
numbers in its first l registers and by executing the first instruction of P (labeled by l0); it
terminates with reaching the HALT -instruction and the output of a k-vector of natural
numbers in its last k registers. Without loss of generality, we may assume all registers
except the last k output registers to be empty at the end of the computation.

For useful results on the computational power of register machines, we refer to [11];
for example, to prove our main theorem, we need the following formulation of results

Simple P systems with Prescribed Teams of Sets of Rules 11

for register machines generating or accepting recursively enumerable sets of vectors of
natural numbers with k components or computing partial recursive relations on vectors
of natural numbers:
Proposition 1. Deterministic register machines can accept any recursively enumerable
set of vectors of natural numbers with l components using precisely l + 2 registers.
Without loss of generality, we may assume that at the end of an accepting computation
all registers are empty.
Proposition 2. Register machines can generate any recursively enumerable set of vectors
of natural numbers with k components using precisely k + 2 registers. Without loss
of generality, we may assume that at the end of a generating computation the first two
registers are empty, and, moreover, on the output registers, i.e., the last k registers, no
SUB-instruction is ever used.
Proposition 3. Register machines can compute any partial recursive relation on vectors
of natural numbers with l components as input and vectors of natural numbers with k
components as output using precisely l+ 2 +k registers, where without loss of generality,
we may assume that at the end of a successful computation the first l + 2 registers are
empty, and, moreover, on the output registers, i.e., the last k registers, no SUB-instruction
is ever used.

In all cases it is essential that the output registers never need to be decremented.

2.2 Extended Tabled Lindenmayer Systems
An extended tabled Lindenmayer system (an ET0L system for short) is a construct

G = (V,Σ, T1, . . . , Tn, A) where

– V is a set of objects;
– Σ ⊆ V is a set of terminal objects;
– Tj , 1 ≤ i ≤ n, called tables are finite sets of non-cooperative rules over V , i.e., of
the form a→ u with a ∈ V and u ∈ V ∗;

– A ∈ V + is the axiom.
A computation in the ET0L system G starts with the axiom A; then, in each

computation step, a table Tj is chosen and the rules in Tj are applied to the current
configuration in a parallel way. The language generated by G is the set of all terminal
strings in Σ∗ obtained in that way from the axiom A, i.e.,

L(G) = {w ∈ Σ∗ | A =⇒∗ w}.

ET0L systems can also be considered as computing models working on multisets
instead of strings, i.e., the axiom A is the initial multiset and the configurations are
multisets on which the non-cooperative rules in the tables work in parallel. In the
following, such ET0L systems working on multisets will be denoted as mET0L
systems. Obviously, we have L(mET0L) = PsL(ET0L).
Remark 1. As a technical detail we mention that many authors require every table to
contain at least one rule for every object in V . We observe that incomplete tables missing
a rule for some x ∈ V can easily be made complete by adding the unit rules x→ x for
all x ∈ V for which so far no rule is already present in the table.

12 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

3 Simple P systems

Taking into account the well-known flattening process, which means that computations in
a P system with an arbitrary (static) membrane structure can be simulated in a P system
with only one membrane, e.g., see [8], in this paper we only consider simple P systems,
i.e., with the simplest membrane structure of only one membrane region:

Definition 2. A simple P system is a construct

Π = (V, C, Σ,w,R, δ)

where

– V is the alphabet of objects;
– C ⊆ V is the alphabet of catalysts;
– Σ ⊆ (V \ C) is the alphabet of terminal objects;
– w ∈ V ◦ is the multiset of objects initially present in the membrane region;
– R is a finite set of evolution rules over V ; these evolution rules are multiset rewriting
rules u→ v with u, v ∈ V ◦;

– δ is the derivation mode.

A catalytic rule is of the form ca→ cv, a non-cooperative rule is of the form a→ v,
where c is a catalyst, a is an object from V \ C, and v is a string from (V \ C)∗. A simple
P system only using catalytic and non-cooperative rules is called catalytic, and it is called
purely catalytic if only catalytic rules are used. The type of a (simple) P system only
using non-cooperative rules is abbreviated by ncoo, the types of catalytic and purely
catalytic P systems are abbreviated by cat and pcat, respectively.

The multiset in the single membrane region of Π constitutes a configuration of the
P system. The initial configuration is given by the initial multiset w; in case of accepting
or computing P systems the input multiset w0 is assumed to be added to w, i.e., the initial
configuration then is ww0.

A transition between configurations is governed by the application of the evolution
rules, which is done in the given derivation mode δ. The application of a rule u → v
to a multisetM results in subtracting fromM the multiset identified by u, and then in
adding the multiset identified by v. Observe that each catalyst can be used (at most) once
in every derivation step.

If no catalysts are used, we omit C and simply write Π = (V,Σ,w,R, δ).

3.1 Variants of Derivation Modes

Given a P system Π = (V, C, Σ,w,R, δ), the set of multisets of rules applicable to a
configuration C is denoted by Appl(Π,C).

The set of all multisets of rules applicable to a given configuration can be restricted
by imposing specific conditions, thus yielding the following basic derivation modes (for
example, see [9] for formal definitions):

– asynchronous mode (abbreviated asyn): at least one rule is applied;

Simple P systems with Prescribed Teams of Sets of Rules 13

– sequential mode (sequ): only one rule is applied;
– maximally parallel mode (max): a non-extendable multiset of rules is applied;
– maximally parallelmodewithmaximal number of rules (maxrules): a non-extendable

multiset of rules of maximal possible cardinality is applied;
– maximally parallel mode with maximal number of objects (maxobjects): a non-
extendable multiset of rules affecting as many objects as possible is applied.

If Appl(Π,C) is not empty, this set equals the set Appl(Π,C, asyn) of multisets of
rules applicable in the asynchronous derivation mode (abbreviated asyn).

In [5], these derivation modes are restricted in such a way that each rule can be applied
at most once, thus yielding the set modes sasyn, smax, smaxrules, and smaxobjects
(the sequential mode is already a set mode by definition).

In this paper we shall restrict ourselves to the derivation modes sequ andmax:

The set Appl(Π,C, sequ) denotes the set of multisets of rules applicable in the
sequential derivation mode (abbreviated sequ), where in each derivation step exactly
one rule is applied.

The standard parallel derivation mode used in P systems is the maximally parallel
derivation mode (max for short), in which only non-extendable multisets of rules can be
applied:

Appl(Π,C,max) ={R ∈ Appl(Π,C) |
there is no R′ ∈ Appl(Π,C)

such that R′ ⊃ R}.

For some new variants of derivation modes we refer to [2,3].

3.2 Computations in a P system

The P system continues with applying multisets of rules according to the given derivation
mode until there remain no applicable rules in the single region of Π , i.e., as usual, with
all these variants of derivation modes as defined above, we consider halting computations.

We may generate or accept or even compute functions or relations. The inputs/outputs
may be multisets or strings, defined in the well-known way. When the system halts, in
case of computing with multisets we consider the number of objects fromΣ contained in
the membrane region at the moment when the system halts as the result of the underlying
computation of Π .

We would like to emphasize that as results we only take the objects from the terminal
alphabet Σ, especially the catalysts are not counted to the result of a computation. On
the other hand, with all the proofs given in this paper, except for the catalysts – if any –
no other “garbage” remains in the membrane region at the end of a halting computation,
i.e., we could even omit Σ.

14 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

3.3 (Simple) P systems With Label Control

We may extend the model of a simple P system to the model of a simple P system with
label control

Π = (V, C, Σ,w,B,R, δ)

by labelling each rule inR by an element from a set of labels B. Then in any derivation
step only rules labeled by the same label r ∈ B are allowed to be used together. Such
controlled P systems were investigated in [10].

Example 1. Consider the simple P system of type ncoo without catalysts

Π = (V = {a, b}, Σ = {a}, w = b, B = {1, 2},R = {1 : b→ bb, 2 : b→ a},max)

with the two labels 1 and 2 in B as well as the labeled rules 1 : b→ bb and 2 : b→ a in
R.

Applying rule 1 : b → bb n ≥ 0 times we obtain b2n ; by applying the second rule
2 : b→ a we finally obtain the terminal multiset a2n . Hence, L(Π) = {a2n | n ≥ 0}, a
multiset language which cannot be obtained by a simple P system of type ncoo without
additional control mechanism.

4 Simple P systems with Prescribed Teams of Sets of Rules

We now consider a new model of simple P systems, where in one derivation step specific
sets of rules – called teams – are applied in their assigned derivation mode. As usual, we
start with a finite multiset of objects until no such team can be applied any more.

Definition 3. A simple P system with prescribed teams of sets of rules – a PPT system
for short – is a construct

Π = (V,Σ, P, T1, . . . , Tn, A) where

– V is a set of objects;
– Σ ⊆ V is a set of terminal objects;
– P is a finite set of multiset rules, i.e., each rule is the form u→ v with u ∈ V ∗ and
v ∈ V +;

– each prescribed team Tj , 1 ≤ i ≤ n, is a finite set of sets of rules from P together
with the associated derivation mode δj and possibly some applicability condition
Kj , i.e., Tj = ({(Kj,i, Rj,i, δj,i) | 1 ≤ i ≤ nj}), where the Rj,i ⊆ P are finite sets
of rules from P ;

– A ∈ V ◦ is a finite multiset of initial objects from V .

As usual, a rule p ∈ P, p = u→ v, is called applicable to a configuration, i.e., an
object x ∈ V ◦, if and only if u is a subset of x. The set of all rules applicable to x is
denoted by Appl(Π,x)

The number n of teams is called the degree of Π . |Tj | is called the size of the
prescribed team Tj . If all prescribed teams have at most size s, then Π is called a PPT

Simple P systems with Prescribed Teams of Sets of Rules 15

system of size s. If the number of rules in the sets of rules is at mostm, then Π is called
a PPT system of rule sizem.Π is called a PPT system of type (n, s,m), if it is of degree
n, size s, and rule sizem. Moreover, if all rules in the sets of rules in the teams are of a
specific type α (for example ncoo), we call Π a PPT system of type (α;n, s,m).

The family of sets of multisets generated/accepted by PPT system of type (α;n, s,m)
is denoted by L(PPTgen(α;n, s,m))/L(PPTacc(α;n, s,m)). Any of the parameters
n, s,m can be replaced by ∗, if the number cannot be bounded; α can also be omitted.

As derivation modes, we will restrict ourselves to the sequential derivation mode
sequ and the maximally parallel derivation modemax.

The conditions Kj,i in the most general case can be any computable/recursive
features of the underlying configuration. Here we essentially will consider random
context conditions, i.e., Kj,i = (Pj,i, Q,j,i), where Pj,i and Qj,i are finite sets of
multisets over V ; Pj,i is the set of permitting contexts and Qj,i is the set of forbidden
contexts. The random context condition Kj,i = (Pj,i, Qj,i) is fulfilled by a multiset x
if and only if x contains each multiset in Pj,i, but none of the multisets in Qj,i. If no
conditionsKj,i are specified, we simply write Tj = {(Rj,i, δj,i) | 1 ≤ i ≤ nj}.

If different derivation modes appear in a team, the whole PPT system is called non-
homogenous. The system is called locally homogenous, if for all teams, the sets of rules
in the team all are applied in the same derivation mode δj , and we write Tj = ({Rj,i |
1 ≤ i ≤ nj}, δj), 1 ≤ j ≤ n. Finally, the system is called globally homogenous if the
derivation mode is the same δ for all Tj , and we only write Tj = {Rj,i | 1 ≤ i ≤ nj}
and specify δ by writing Π = (V,Σ, P, T1, . . . , Tn, δ, A).

Computations in a PPT system Given a prescribed team of sets of rules

Tj = ({(Kj,i, Rj,i, δj,i) | 1 ≤ i ≤ nj})

with the derivation modes {δj,i | 1 ≤ i ≤ nj} ⊆ {sequ,max}, a derivation step with
Tj on the configuration x can be carried out in the following way:

1. we choose a multiset of rules R ∈ Appl(Π,x); the multiset of objects which the
rules in R bind is denoted by Bind(R, x), the multiset of objects in x \Bind(R, x)
is denoted by Idle(R, x);

2. we now for all 1 ≤ i ≤ nj check whether x fulfills the applicability conditionsKj,i;
3. each rule in R must be assigned to one of the sets Rj,i for which the applicability

conditionKj,i is fulfilled, yielding the multiset of rules R′j,i; the multiset of objects
which the rules in R′j,i bind is denoted by Bind(R,R′j,i,K);

4. for δj,i = max we now check that R′j,i cannot be extended by using an additional
rule from Rj,i on objects from Idle(R, x);

5. for δj,i = sequ we first check whether |R′j,i| = 1; if |R′j,i| = 1, then we have to
check that no rule from Rj,i can be applied to objects from Idle(R, x); if |R′j,i| > 1
the check fails, i.e., R cannot be applied;

6. if all checks from above have been passed correctly, the multiset of rules R can be
applied to the current configuration x.

16 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

We emphasize that the rule sets in a team compete for the objects available in the
underlying configuration, but at the end each set of rules for itself makes its part of
the transition from the underlying configuration to the next configuration in a correct
way according to its assigned derivation mode, as no additional rule could bind an idle
object. Moreover, we observe that a set of rules Rj,i from Tj can only be chosen if the
applicability conditionKj,i is fulfilled by x. Finally, a team Tj can only be applied if the
multiset of rules obtained by the procedure described above is not empty.

As some variant of the general model we may also consider prescribed teams of sets
of rules for which the applicability conditionsKj,i are the same for all 1 ≤ i ≤ nj , i.e.,
just one conditionKj , and then we write

Tj = (Kj , {(Rj,i, δj,i) | 1 ≤ i ≤ nj})

and can simplify the procedure for applying Tj by first checking that the current
configuration fulfillsKj .

As a first example we show how label control can easily be simulated by teams of
sets of rules:

Example 2. Consider the globally homogenous PPT system of type ncoo

Π = (V = {a, b}, Σ = {a}, P, T1, T2,max, b) where

P = {b → bb, b → a}, T1 = {{b → bb}}, and T2 = {{b → a}}. Π is a globally
homogenous PPT system of type (ncoo; 2, 1, 1).

Applying team T1, i.e., the rule b→ bb, in the maximally parallel way n ≥ 0 times
we obtain b2n ; by applying the second team T2, i.e., the rule b → a, in the maximally
parallel way once, we finally obtain the terminal multiset a2n as in Example 1. Hence,
we conclude L(Π) = {a2n | n ≥ 0} as well as

{a2
n

| n ≥ 0} ∈ L(gh(max)PPTgen(ncoo; 2, 1, 1)),

with the prefix gh(max) indicating that we consider globally homogenous PPT systems
working in the derivation modemax.

5 PPT Systems Simulating P systems With Label Control

As can already be guessed by looking at Example 2, PPT systems can easily simulate
P systems with label control – without catalysts – which are working in the derivation
modemax by putting the rules with the same labels into one team:

Theorem 1. Every P systems with label control Π , without catalysts, and working in
the derivation modemax, can be simulated by a PPT system of type (n, 1, ∗), where n is
the number of different labels for the rules in Π .

Simple P systems with Prescribed Teams of Sets of Rules 17

Proof. Given a simple P system with label control, without catalysts,

Π = (V,Σ,w,B,R,max)

where each rule in R is labelled by an element from a set of labels B, B = {lj | 1 ≤
j ≤ n}, we construct a globally homogenous PPT system Ψ of degree n and size 1,
simulating (the computations of) Π:

Ψ = (V,Σ, P, T1, . . . , Tn,max,w)

where we define
P = {p | lj : p ∈ R, 1 ≤ j ≤ n}

as well as the teams Tj , 1 ≤ j ≤ n, as follows:

Tj = {{p | lj : p ∈ R}}

By definition, the size of Tj is 1, whereas the number of rules in the single set of rules in
a team can be arbitrarily large.

We observe that applying the set of rules in in the team Tj in Ψ in the maximally
parallel way has the same effect as applying exactly the rules with label lj in Π in the
maximally parallel way. ut

6 PPT Systems SimulatingmET0L Systems

We now show that the computational power ofmET0L systems equals the computational
power of globally homogenous PPT systems of type ncoowithout applicability conditions
working in the derivation modemax.

Theorem 2. Every mET0L system with n tables can be simulated by a globally
homogenous PPT system of type ncoo, degree n, and size 1 without applicability
conditions working in the derivation modemax.

Proof. ThemET0L systemG = (V,Σ, T ′1, . . . , T
′
n, A) can be simulated by the globally

homogenous PPT system of type ncoo, degree n, and size 1 without applicability
conditions working in the derivation modemax

Π = (V,Σ, P, T1, . . . , Tn,max,A)

where we simply take

Tj = {T ′j \ {a→ a | a ∈ Σ}}, 1 ≤ j ≤ n,

i.e., the work of the table T ′j is simulated by the single set of rules in the team Tj of the
PPT system Π .

We observe that we have to exclude the unit rules a→ a for the terminal symbols
a ∈ Σ, from the sets of rules T ′j , 1 ≤ j ≤ n, in order to ensure that Π halts as soon
as a terminal configuration (i.e., a configuration only containing terminal symbols) has
been reached. Finally, we mention that every (useless) team Tj of the form {∅} is to be
omitted. ut

18 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

In order to show the inverse inclusion, we need the following lemma:

Lemma 1. Every globally homogenous PPT system of degree n and size k without
applicability conditions working in the derivation mode max can be simulated by a
globally homogenous PPT system of degree n and size 1 without applicability conditions
working in the derivation modemax.

Proof. The globally homogenous PPT system of degree n and size k without applicability
conditions working in the derivation modemax

Π = (V,Σ, P, T1, . . . , Tn,max,A)

with Tj = {Rj,i | 1 ≤ j ≤ nj}, 1 ≤ j ≤ n, can be simulated by the corresponding
globally homogenous PPT system of degree n and only size 1 without applicability
conditions working in the derivation modemax

Π ′ = (V,Σ, P, T ′1, . . . , T
′
n,max,A)

where we take T ′j = {{y | y ∈ Rj,i, 1 ≤ i ≤ nj}}. We observe that by definition the
rules in the Rj,i work in parallel on the underlying configurations in the same way if
they are grouped in the Rj,i or just in one set of rules {y | y ∈ Rj,i, 1 ≤ i ≤ nj}. We
observe that Π ′ again is of degree n, but only of size 1. ut

Based on this lemma, we now can show how a globally homogenous PPT system of
type ncoo, degree n without applicability conditions working in the derivation mode
max can be simulated by anmET0L system with n tables:

Theorem 3. Every globally homogenous PPT system of type ncoo, degree n, and size k
without applicability conditions working in the derivation modemax can be simulated
by anmET0L system with n tables.

Proof. According to Lemma 1, without loss of generality we may assume that the size k
is only one. Hence, we may start with a globally homogenous PPT system of type ncoo,
degree n, and size 1 without applicability conditions working in the derivation mode
max

Π = (V,Σ, P, T1, . . . , Tn,max,A)

where for the teams Tj we have Tj = {T ′j}, 1 ≤ j ≤ n, with T ′j being a set of
non-cooperative rules.

Then themET0L system

G = (V,Σ, T ′1, . . . , T
′
n, A)

simulates the (computations of the) PPT systemΠ , as the work of the table T ′j simulates
the application of the team Tj of the PPT system Π with the single set of rules T ′j .

As a technical detail we mention that the tables T ′j have to be extended by unit rules
x→ x for every x ∈ V for which no rule is already present in it, in order to fulfill the
requirement for ET0L systems as already discussed in Remark 1. ut

In sum, we have shown the following result (where gh(max)PPT (ncoo) denotes
the globally homogenous PPT systems of type ncoo working in the derivation mode
max):

Theorem 4. L(mET0L) = L(gh(max)PPT (ncoo)).

Simple P systems with Prescribed Teams of Sets of Rules 19

7 PPT Systems Simulating [Purely] Catalytic P systems

We first consider purely catalytic P systems, which correspond to PPT systems where all
sets of non-cooperative rules in the unique team work in the sequential derivation mode.

Theorem 5. Every purely catalytic P system with n catalysts can be simulated by a
corresponding globally homogenous PPT system of type ncoo, degree 1, and size n
without applicability conditions working in the derivation mode sequ.

Proof. The purely catalytic P system with n catalysts

Π = (V, C, Σ,w,R,max),

i.e., C = {ck | 1 ≤ k ≤ n}, can be simulated by the globally homogenous PPT system of
type ncoo, degree 1, and size nwithout applicability conditions working in the sequential
derivation mode

Π = (V,Σ, P, T1, sequ, w)

with T1 = {R1,k | 1 ≤ k ≤ n} and

P = {a→ u | cka→ cku ∈ R for some 1 ≤ k ≤ n}

as well as
R1,k = {a→ u | cka→ cku ∈ R}, 1 ≤ k ≤ n.

The applicability of the unique team works by applying (at most) one rule a→ u from
eachR1,k, 1 ≤ k ≤ n, which corresponds to applying the corresponding rule cka→ cku
in Π . ut

Simple catalytic P systems with n catalysts can be mimicked by simple P systems
with prescribed teams of sets of rules, where as in the case of purely catalytic P systems
the work of the n catalysts is simulated by n sets of non-cooperative rules in the team
working in the sequential mode and one additional set of non-cooperative rules simulates
the set of non-catalytic rules working in the maximally parallel derivation mode.

Theorem 6. Every catalytic P system with n catalysts can be simulated by a correspond-
ing PPT system of type ncoo, degree 1, and size n+ 1 without applicability conditions
with n components of the unique team working in the derivation mode sequ and one
working in the derivation modemax.

Proof. The catalytic P system with n catalysts

Π = (V, C, Σ,w,R,max),

i.e., C = {ck | 1 ≤ k ≤ n}, can be simulated by the PPT system of type ncoo, degree 1,
and size n+ 1 without applicability conditions

Π = (V,Σ, P, T1, w)

20 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

with T1 = {R1,k | 1 ≤ k ≤ n+ 1} and

P = {a→ u | cka→ cku ∈ R for some 1 ≤ k ≤ n} ∪ {a→ u | a→ u ∈ R}

as well as
R1,k = ({a→ u | cka→ cku ∈ R}, sequ), 1 ≤ k ≤ n,

and
R1,n+1 = ({a→ u | a→ u ∈ R},max),

The application of the unique team works by applying (at most) one rule a → u
from each R1,k, 1 ≤ k ≤ n, which corresponds to applying the corresponding rule
cka→ cku in Π , as well as the rules in R1,n+1 in the maximally parallel way.

Observe that in contrast to the globally homogenous PPT systems for simulating
purely catalytic P systems, we now have non-homogenous PPT systems, as we have to
use both derivation modes sequ andmax in the unique team. ut

According to Propositions 2 and 1, from Theorems 5 and 6 we immediately infer the
following results:

Corollary 1. For any d ≥ 1, we have

1. NdL(RE) = L(PPTgen(ncoo; 1, 3, ∗)) and
2. NdL(RE) = L(PPTacc(ncoo; 1, d+ 3, ∗));

moreover,
PsL(RE) = L(PPTgen(ncoo; 1, ∗, ∗)) = L(PPTacc(ncoo; 1, ∗, ∗)).
In all cases, the degree of the PPT systems is only 1.

8 PPT Systems Directly Simulating Register Machines

In this section we show how register machines can directly be simulated by PPT systems
in an easy way when using applicability conditions represented by sets of permitting and
forbidden contexts, see the defintion on page 15.

Theorem 7. The computations of a register machine can be simulated by a globally
homogenous PPT system of type ncoo and size 2 using permitting and forbidden contexts
as applicability conditions in the sequential derivation mode.

Proof. Consider the register machine

M = (m,B, l0, lh, R)

with BADD denoting the set of labels of ADD-instructions p : (ADD(r), q, s) of
arbitrary registers r, and BSUB(r) denoting the set of labels of all SUB-instructions
p : (SUB(r), q, s) of a decrementable register r. Moreover, for any p ∈ B \ {lh},
Reg(p) denotes the register affected by the ADD- or SUB-instruction labeled by p.

Simple P systems with Prescribed Teams of Sets of Rules 21

We now construct the globally homogenous PPT system of size 2 working in the
sequential derivation mode using permitting and forbidden contexts as applicability
conditions

Π = (V,Σ, P, T1, . . . , Tn, sequ, w).

Throughout the computation of Π , one symbol p ∈ B represents the instruction from
the register machine to be simulated next, and the number of symbols ar represents the
contents of register r, 1 ≤ r ≤ m. Hence, we start with the axiom w = l0w0, where w0

represents the initial contents of the registers. If the final label lh appears, we know that
the computation inM has been successful and finally can erase lh, so that a multiset
over Σ remains as the result of the computation.

Moreover, the set of symbols V only consists of the labels in B and the symbols ar
representing the registers:

V = B ∪ {ar | 1 ≤ r ≤ m}.

The set of terminal symbols Σ consists of only those symbols from the set {ar | 1 ≤
r ≤ m} which represent output registers.

We need the following simple non-cooperative rules in P for the simulation of the
instructions ofM :

P = {p→ qar, p→ sar | p : (ADD(r), q, s) ∈ R}
∪ {p→ q, p→ s | p : (SUB(r), q, s) ∈ R}
∪ {ar → λ | 1 ≤ r ≤ m and r is a decrementable register}
∪ {lh → λ}

The teams of sets of rules with applicability conditions for simulating the instructions
of the register machine defined below form the teams T1, . . . , Tn.

– p : (ADD(r), q, s), p ∈ BADD, is simulated by the team

Rp = {(({p}, ∅), {p→ qar, p→ sar})}
which can also be written in a simpler way as
Rp = {{p→ qar, p→ sar}}, because the rules in this set of rules in this team can
anyway only be applied if p is present.

– p : (SUB(r), q, s); p ∈ BSUB(r), is simulated by the team of sets of rules

Rp,1 = (({p, ar}, ∅), {{p→ q}, {ar → λ}})

(both the presence of p and ar have to be checked in order to guarantee that both
rules p→ q and ar → λ are applied) as well as by the team of sets of rules

Rp,2 = {(({p}, {ar}), {p→ s})}

(both the presence of p and the absence of ar have to be checked to guarantee that
we only proceed to label s if no symbol ar is present).

22 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

– lh : HALT is simulated by the team
Rh = {(({lh}, ∅), {lh → λ})},
which can also be written in a simpler way as
Rh = {{lh → λ}}.

Only in the case of applying a team Rp,1 two rules are applied in one step, otherwise
only one rule is applied.

The application of a team is only possible if the current label symbol p appears in the
underlying configuration, and in the case of a SUB-instruction also the presence/absence
of aReg(p) is correctly given. Throughout the computation inΠ exactly one of the teams
of sets of rules is applicable before finally a configuration only containing terminal
symbols is reached. ut

9 Computational Completeness

According to Subsection 2.1, register machines are a model being computationally
complete for multisets, i.e., every partial recursive relation on multisets can be computed
by a register machine. Hence, from Theorem 7 we immediately infer the following result:

Theorem 8. PPT systems of type ncoo and size 2 using applicability conditions repre-
sented by sets of permitting and forbidden contexts in the sequential derivation mode are
computationally complete for multisets.

Instead of non-cooperative rules we can also use the simple rules of insertion and
deletion:

– I(a) inserts an object a in the underlying multiset (and can be interpreted as the rule
λ→ a).

– D(a) deletes an object a from the underlying multiset, if at least one a is present
(and can be interpreted as the rule a→ λ).

Based on the proof of Theorem 7, we easily get the following result for PPT systems
using insertion and deletion rules (called PPT systems of type InsDel for short):

Corollary 2. PPT systems of type InsDel and size 3 using applicability conditions
represented by sets of permitting and forbidden contexts in the sequential derivation
mode are computationally complete for multisets.

Proof. Consider the register machine

M = (m,B, l0, lh, R)

with BADD denoting the set of labels of ADD-instructions p : (ADD(r), q, s) of
arbitrary registers r, and BSUB(r) denoting the set of labels of all SUB-instructions
p : (SUB(r), q, s) of a decrementable register r. Moreover, for any p ∈ B \ {lh},
Reg(p) denotes the register affected by the ADD- or SUB-instruction labeled by p.

Simple P systems with Prescribed Teams of Sets of Rules 23

We now construct the globally homogenous PPT system of type InsDel and size 3
working in the sequential derivation mode using permitting and forbidden contexts as
applicability conditions

Π = (V,Σ, P, T1, . . . , Tn, sequ, w).

Throughout the computation of Π , one symbol p ∈ B represents the instruction from
the register machine to be simulated next, and the number of symbols ar represents the
contents of register r, 1 ≤ r ≤ m. Hence, we start with the axiom w = l0w0, where w0

represents the initial contents of the registers. If the final label lh appears, we know that
the computation inM has been successful and finally can erase lh, so that a multiset
over Σ remains as the result of the computation.

Moreover, the set of symbols V only consists of the labels in B and the symbols ar
representing the registers:

V = B ∪ {ar | 1 ≤ r ≤ m}.

The set of terminal symbols Σ consists of only those symbols from the set {ar | 1 ≤
r ≤ m} which represent output registers.

We need the following simple insertion and deletion rules in P for the simulation of
the instructions ofM :

P = {I(p), D(p) | p ∈ B}
∪ {I(ar) | 1 ≤ r ≤ m}
∪ {D(ar) | 1 ≤ r ≤ m and r is a decrementable register}

The teams of sets of rules with applicability conditions for simulating the instructions
of the register machine defined below form the teams T1, . . . , Tn.

– p : (ADD(r), q, s), p ∈ BADD, is simulated by the team

Rp = {(({p}, ∅), {D(p)}),
(({p}, ∅), {I(q), I(s)}),
(({p}, ∅), {I(ar)})},

which in a shorter way could be written as

Rp = (({p}, ∅), {{D(p)}, {I(q), I(s)}, {I(ar)}})

as the applicability condition ({p}, ∅) is required for all sets of rules in the team.
Observe that the size of these teams now is 3!

– p : (SUB(r), q, s); p ∈ BSUB(r), is simulated by the team

Rp,1 = (({p, ar}, ∅), {{D(p)}, {I(q)}, {D(ar)}})

(again the size of these teams now is 3)

24 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

as well as by the team

Rp,2 = (({p}, {ar}), {{D(p)}, {I(s)}})

– lh : HALT is simulated by the team

Rh = {{D(lh)}}.

Throughout the computation inΠ exactly one of the teams of sets of rules is applicable
before finally a configuration only containing terminal symbols is reached. ut

As is well-known, catalytic and purely catalytic P systems are computationally
complete (for multisets), too. Therefore, based on the results shown in Section 7 we get
the following results (compare with Corollary 1):

Corollary 3. Globally homogenous PPT systems of type ncoo and degree 1 without
applicability conditions working in the sequential derivation mode are computationally
complete for multisets.

Corollary 4. PPT systems of type ncoo and degree 1 without applicability conditions
with one set of rules in the unique team working in the maximally parallel derivation
mode and all the other sets of rules working in the sequential derivation mode are
computationally complete for multisets.

10 Conclusion

In this paper we have considered the concept of using prescribed teams of sets of rules
being applied in different derivation modes, with the applicability of a team possibly
depending on a given condition. Among other general results, we have shown that simple
purely catalytic P systems with n catalysts can be simulated by simple P systems with
one prescribed team of sets of rules with all n sets of non-cooperative rules in this team
working in the sequential derivation mode thus simulating the work of the n catalysts,
as well as that simple catalytic P systems with n catalysts can be simulated by simple
P systems with one prescribed team of sets of non-cooperative rules, where one set of
this team works in the maximally parallel derivation mode and the other n sets of rules in
this team work in the sequential mode thus again simulating the work of the n catalysts.
From the results known for simple (purely) catalytic P systems, we immediately infer
the corresponding computational completeness results for the new variants of simple
P systems, with on one hand only using non-cooperative rules and no applicability
conditions. On the other hand, we can show computational completeness for different
variants of simple P systems with prescribed teams of sets of non-cooperative rules by
directly simulating register machines, thereby using applicability conditions given as
sets of (atomic) promoters and inhibitors.

Simple P systems with Prescribed Teams of Sets of Rules 25

Throughout this paper, we have restricted ourselves to the two basic derivation
modes, i.e., the sequential one and the maximally parallel derivation mode. A thorough
investigation of simple P systems with prescribed teams of sets of rules using other
derivation modes remains for future research. Moreover, other kinds of rules might be
used, too; for example, insertion and deletion rules instead of non-cooperative rules as
already used for simulating register machines in Corollary 2.

Acknowledgements

The authors gratefully acknowledge the useful comments of the anonymous referees.
Artiom Alhazov acknowledges project 20.80009.5007.22 “Intelligent information

systems for solving ill-structured problems, processing knowledge and big data” by the
National Agency for Research and Development.

References

1. Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov. When catalytic P systems with one
catalyst can be computationally complete. Journal of Membrane Computing, 3(3):170–181,
2021.

2. Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, and Marion Oswald. Variants of simple purely
catalytic P systems with two catalysts. In György Vaszil, Claudio Zandron, and Gexiang
Zhang, editors, International Conference on Membrane Computing ICMC 2021, Proceedings,
pages 39–53, 2021.

3. Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, and Sergey Verlan. Variants of simple P
systems with one catalyst being computationally complete. In György Vaszil, Claudio Zandron,
and Gexiang Zhang, editors, International Conference on Membrane Computing ICMC 2021,
Proceedings, pages 21–38, 2021.

4. Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, and Sergey Verlan. Prescribed teams of rules
working on several objects. In Jérôme Durand-Lose and György Vaszil, editors,Machines,
Computations, and Universality – 9th International Conference, MCU 2022, Debrecen,
Hungary, August 31 – September 2, 2022, Proceedings, volume 13419 of Lecture Notes in
Computer Science, pages 27–41. Springer, 2022.

5. Artiom Alhazov, Rudolf Freund, and Sergey Verlan. P systems working in maximal variants
of the set derivation mode. In Alberto Leporati, Grzegorz Rozenberg, Arto Salomaa, and
Claudio Zandron, editors,Membrane Computing – 17th International Conference, CMC 2016,
Milan, Italy, July 25-29, 2016, Revised Selected Papers, volume 10105 of Lecture Notes in
Computer Science, pages 83–102. Springer, 2017.

6. E. Csuhaj-Varjú, J. Dassow, and J. Kelemen. Grammar Systems: A Grammatical Approach to
Distribution and Cooperation. Topics in computer mathematics. Gordon and Breach, 1994.

7. Jürgen Dassow and Gheorghe Păun. Regulated Rewriting in Formal Language Theory.
Springer, 1989.

8. Rudolf Freund, Alberto Leporati, Giancarlo Mauri, Antonio E. Porreca, Sergey Verlan, and
Claudio Zandron. Flattening in (tissue) P systems. In Artiom Alhazov, Svetlana Cojocaru,
MarianGheorghe, Yurii Rogozhin, Grzegorz Rozenberg, andArto Salomaa, editors,Membrane
Computing, volume 8340 of Lecture Notes in Computer Science, pages 173–188. Springer,
2014.

26 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

9. Rudolf Freund and Sergey Verlan. A formal framework for static (tissue) P systems. In George
Eleftherakis, Petros Kefalas, Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa, editors,
Membrane Computing, volume 4860 of Lecture Notes in Computer Science, pages 271–284.
Springer, 2007.

10. Kamala Krithivasan, Gh. Păun, and Ajeesh Ramanujan. On controlled P systems. Fundam.
Inform., 131(3–4):451–464, 2014.

11. Marvin L. Minsky. Computation. Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, NJ, 1967.

12. Gheorghe Păun. Computing with membranes. Journal of Computer and System Sciences,
61(1):108–143, 2000.

13. Gheorghe Păun. Membrane Computing: An Introduction. Springer, 2002.
14. Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa, editors. The Oxford Handbook of

Membrane Computing. Oxford University Press, 2010.
15. Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Languages. Springer,

1997.
16. The P Systems Website. http://ppage.psystems.eu/.

http://ppage.psystems.eu/

P Systems with Reactive Membranes

Artiom Alhazov1, Rudolf Freund2, Sergiu Ivanov3, David Orellana-Martín4,5, Antonio
Ramírez-de-Arellano4,5, José Antonio Rodríguez Gallego6

1 State University of Moldova,
Vladimir Andrunachievici Institute of Mathematics and Computer Science

Academiei 5, Chis, inău, MD-2028, Moldova
artiom@math.md

2 Faculty of Informatics, TU Wien
Favoritenstraße 9–11, 1040 Wien, Austria

rudi@emcc.at
3 IBISC, Univ. Évry, Paris-Saclay University
23, boulevard de France 91034 Évry, France

sergiu.ivanov@ibisc.univ-evry.fr
4 Research Group on Natural Computing,

Department of Computer Science and Artificial Intelligence,
Universidad de Sevilla

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
{dorellana,aramirezdearellano}@us.es

5 SCORE Laboratory, I3US, Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

6 Departmento de Construcciones Arquitectónicas I,
Universidad de Sevilla

Avda. Reina Mercedes 2, 41012 Sevilla, Spain
jrodriguez14@us.es

Abstract. Membranes are one of the key concepts in P systems and membrane
computing, and a lot of research focuses on their properties and possible extensions:
membrane division, membrane dissolution, mobile membranes, etc. In this work,
we explore the possibility of using membranes for thinking about the emergence
of milieu separations at the origins of life. We propose a new variant of P systems
with reactive membranes, in which every symbol is initially surrounded by an
elementary membrane, and in which membranes can non-deterministically merge
and split, leading to the formation of bigger and more complicated membranes.
We show that such non-deterministic splitting and merging does not seem to
radically affect the computational power: P systems with reactive membranes and
non-cooperative rules generate at least all semilinear languages, and cooperative
rules allow for simulating partially blind register machines.We briefly discuss using
P systems with reactive membranes for illustrating the emergence of autocatalytic
cycles, but actual constructions are left for future work.

Keywords: origins of life, P systems, self-assembly, space and topology.

28 A. Alhazov et al.

1 Introduction

Membrane computing is a multiset rewriting-based theoretical construct for natural
computing, originally introduced by Gheorghe Păun in [23], and extensively studied ever
since. The structure of a membrane system—or a P system—mimics that of a living
cell: it is a hierarchical family of nested membranes, each carrying a multiset of abstract
objects and multiset rewriting rules. The objects can be seen as formal representations
of chemical species, and the rewriting rules capture the biochemical interactions these
species may have.

Beyond the obvious abstraction arrow between biochemical species and formal
objects, membrane computing parallels biological systems in another interesting way.
In biology, centralization of functions is quite frequent (e.g., central nervous systems,
specialized organs, etc.), but not fundamental. Only as a first example, simple organisms
carry out many activities in a decentralized way, weakly orchestrated by interference
between related processes. Take unicellular organisms: a computer scientist may be
tempted to consider the genetic material as the program for the whole cell, but it is now
known (e.g. [10]) that the relationship between the genotype and the phenotype—its
manifestation—is very far from the clear program–execution duality imbuing computer
science. As an abstraction of hierarchically structured biochemistry, P systems inherit
this weakly centralized way of functioning, which makes them a good candidate for
supporting the thought process about some grand laws of biology.

In this paper, we lay the groundwork for using P systems as a tool for thinking
about some aspects of the emergence of life. The particular question we focus on is
the emergence of milieu separations, which played an essential role as they allowed to
isolate and protect relevant processes from the environment [11]. Since P systems already
include membranes as first-class citizens, we will use them as a framework for thinking
about the emergence of complex regions from simpler ones.

The approach we take here is to posit that every copy of a symbol a is endowed with
some elementary space—a membrane which initially only contains the multiset a. Two
such symbols can bond by merging their membranes, thereby yielding a more complex
membrane containing 2 symbols. Such membranes can further merge, yielding bigger
and bigger regions. Dually, membranes containing multiple symbols can split into a pair
of simpler membranes, with the contents of the original larger membrane distributed
across its children. This is in fact membrane separation (e.g. [7,21,22]).

Measuring the complexity of a membrane by the number of symbols it contains is
simultaneously simple and appropriate: cooperative evolution rules are allowed, so more
symbols means more applicable rules and therefore more interactions. In the setup we
establish in this paper, all membranes share the same common set of evolution rules.
The rules can naturally be seen as defining a chemistry, while membrane merging and
splitting can on the other hand be seen as some lower-level ground laws governing who
may interact with whom, i.e. the topology of the interactions. The resulting abstract
structures featuring merging and splitting membranes are therefore systems in which
objects interact based on the non-deterministic variations in their neighborhoods. We
call such structures P systems with reactive membranes.

Before using P systems with reactive membranes as a formal tool, a number of
important details have to be sorted out. In particular, we show that the definition of

P Systems with Reactive Membranes 29

membrane splitting and merging turns out to be rather nontrivial. Choosing when to
recover and how to interpret the result impacts the form of the computations of a P system
with reactive membranes, as well as what kind of results one can expect. Finally, this P
system variant as informally introduced above and defined in Section 3 is very basic and
may be extended in many ways, as we briefly show in Section 5.

Note that we do not pretend to faithfully model in any way the processes which
happened at the origins of life. Rather, we acknowledge the exceptional complexity of
these processes, as well as the impossibility to experimentally verify any of the related
hypotheses (e.g., [17]). The intended role of P systems with reactive membranes is to
serve as a formal vehicle for an otherwise abstract thought process, to help to verify the
latter in a basic way, and to help the researcher to deal with complex questions. This
approach is similar in spirit to the works [26,27], in which sign Boolean networks are
used with a similar purpose.

P systems with reactive membranes are naturally part of the lineage of P systems
with active membranes, and feature similarities with other variants in this family. Among
closely related variants are P systems with mobile membranes, in which membranes are
allowed to move across the membrane structure, and thereby change their immediate
neighbors [8,9,20]. Another variant are P systems with vesicles of multisets, in which
multisets are contained in vesicles, which are contained in membranes, implying that
entire multisets of symbols can travel between different membranes, thereby activating
different sets of rules [5,15]. A key specificity of P systems with reactive membranes
setting them apart from the other variants is that membrane splitting and merging is
global, compulsory, and independent of the contents of the membranes or of the rules.
This feature introduces a basic form of space, through which the entities travel and in
which they interact in their immediate neighborhood. On the other hand, compulsory
splitting and merging to be compulsary modulates the computational power in interesting
ways.

This paper is structured as follows. In Section 2 we recall some basic concepts from
formal languages and P systems. In Section 3 we introduce P systems with reactive
membranes, and define the precise semantics of splitting and merging of membranes. In
Section 4 we present some first results concerning the computational power of P systems
with reactive membranes, with non-cooperative and cooperative rules. In Section 5 we
give some examples of possible extensions to the new variant. Finally, in Section 6,
we discuss the potential of reactive membranes for illustrating some processes which
happened at the origins of life, as well as some aspects of their computational power.

2 Preliminaries

For an alphabet V , a finite non-empty set of abstract symbols, the free monoid generated
by V under the operation of concatenation, i.e., the set containing all possible strings
over V , is denoted by V ∗. The empty string is denoted by λ, and V ∗\{λ} is denoted by
V +.

For two natural numbers a, b ∈ N, a ≤ b, we use the notation [a..b] to refer to the
interval of natural numbers between a and b, both included: [a..b] = {a, a+ 1, . . . , b}.

30 A. Alhazov et al.

Given a finite setA, a multiset overA is a function w : A→ N, assigning the number
of times an element of A appears in w. The infinite set of all multisets over A is denoted
by A◦. The family of finite sets of finite multisets over A is denoted by Pfin(A◦).

To spell out a multiset w, we will generally write any string containing exactly the
same symbols with the same multiplicities. For example, the strings aab, aba, ba2 will be
used to refer to the same multisetw with the propertyw(a) = 2,w(b) = 1, andw(c) = 0
for all c ∈ A \ {a, b}. We denote the empty multiset by Λ, i.e., ∀a ∈ A : Λ(a) = 0, and
its string representation is λ, the empty string.

Given two multisets w1 and w2 over A, their multiset union w1 ∪ w2 is defined as
(w1 ∪w2)(a) = w1(a) +w2(a), for all a ∈ A. As their multiset intersection w1 ∩w2 we
define (w1 ∩w2)(a) = min{w1(a), w2(a)}. A restriction of the multiset w : A→ N to
the subset B ⊆ A is the multiset w|B : A→ N with the property that w|B(a) = w(a) if
a ∈ B and w|B(a) = 0 otherwise.

The family of regular, context-free, and recursively enumerable string languages is
denoted by L(REG), L(CF), and L(RE), respectively. For a family of languages FL,
the family of Parikh images of languages in FL is denoted by PsFL. As PsL(REG) =
PsL(CF), in the area of multiset rewriting L(CF) plays no role at all, and in the
area of membrane computing we often only get characterizations of PsL(REG) and
PsL(RE).

For further notions and results in formal language theory we refer to textbooks
like [12] and [25].

In the rest of this section, we briefly recall P systems and the related concepts. For
more extensive overviews, we refer the reader to [18,24].

A (transition) P system is a construct

Π = (O, T, µ, w1, . . . , wn, R1, . . . Rn, δ, hi, ho) where

– O is the alphabet of objects,
– T ⊆ O is the alphabet of terminal objects,
– µ is the membrane structure injectively labelled by the numbers from [1..n] and

usually given by a sequence of correctly nested brackets,
– wi are the multisets giving the initial contents of each membrane i, 1 ≤ i ≤ n,
– Ri is the finite set of rules associated with membrane i, 1 ≤ i ≤ n,
– δ is the derivation mode, and
– hi and ho are the labels of the input membrane and the output membrane, respectively;

1 ≤ hi ≤ n, 1 ≤ ho ≤ n.

Taking into account thewell-knownflattening process, whichmeans that computations
in a P system with an arbitrary (static) membrane structure can be simulated in a P system
with only one membrane, e.g., see [14], often only simple P systems are considered, i.e.,
with the simplest membrane structure of only one membrane region, and then we write:

Π = (O, T,w1, R1, δ)

Quite often, the rules associated with membranes are multiset rewriting rules (or
special cases of such rules). Multiset rewriting rules have the form u → v, with
u ∈ O◦ \ {λ} and v ∈ O◦, where O◦ is the set of multisets over O, and λ(a) = 0,

P Systems with Reactive Membranes 31

for all a ∈ O. If |u| = 1, the rule u → v is called non-cooperative, otherwise it is
called cooperative. In communication P systems, rules are additionally allowed to send
symbols to the neighbouring membranes. In this case, for rules in Ri, v ∈ (O × Tar i)

◦,
where Tar i contains the symbols out (corresponding to sending the symbol to the parent
membrane), here (indicating that the symbol should be kept in membrane i), and inj
(indicating that the symbol should be sent into the child membrane j of membrane i).
When writing out the multisets over O × Tar i, the indication here is often omitted.

In P systems, rules are often applied in the maximally parallel way: in one derivation
step, only a non-extendable multiset of rules can be applied. The rules are not allowed
to consume the same instance of a symbol twice, which creates competition for objects
and may lead to non-deterministic choices between the maximal collections of rules
applicable in one step. The maximally parallel derivation mode is generally denoted by
the symbolmax. Other derivation modes include the sequential derivation mode sequ
in which exactly one rule is applied in every step, the set maximally parallel derivation
mode smax only allowing multisets of rules in which every rule has multiplicity 1, as
well as the asynchronous derivation mode asyn under which no restriction is imposed on
the applied multiset of rules. We refer to the works [3,4,6,16] for an in-depth discussion
of the matter.

A computation of a P system is traditionally considered to be a sequence of con-
figurations it can successively visit, stopping at the halting configuration. A halting
configuration is a configuration in which no rule can be applied any more, in any
membrane. The result of a computation in a P system Π as defined above is the contents
of the output membrane ho projected over the terminal alphabet T .

We will use the notations N(Π) and Ps(Π) to respectively refer to the number
language and the language of multisets generated by Π . The notation OPn(δ, τ) will
refer to the family of P systems with at most nmembranes, operating under the derivation
mode δ and relying on the rules of type τ , where τ = coo if cooperative rules are allowed
and τ = ncoo if all rules are non-cooperative. Finally, we use the notations NOPn(δ, τ)
and PsOPn(δ, τ) to refer to the family of number languages and multiset languages,
respectively, generated by the P systems in the family OPn(δ, τ).

Example 1. Figure 1 shows the graphical representation of the P system formally given
by

Π = ({a, b, c, d}, {a, d}, [1[2]2]1, d, ab,R1, R2,max, 1, 1),
R2 = {a→ aa, b→ b (c, out)},
R1 = ∅.

In the maximally parallel mode, the inner membrane 2 of Π will apply as many
instances of the rules as possible, thereby doubling the number of a, and ejecting a
copy of c into the surrounding (skin) membrane in each step. The symbol d in the skin
membrane is not used. Therefore, after k steps of evolution, membrane 2 will contain the
multiset a2kb and membrane 1 the multiset ckd. Since all rules are always applicable in
Π , this P system never halts. ut

32 A. Alhazov et al.

a→ aa
b→ b (c, out)

ab
2

d

1

Fig. 1: An example of a simple P system.

3 Reactive Membranes

A P system with reactive membranes is the following construct:

Π = (O, T,W0, R, δ) where

– O is the alphabet of objects,
– T ⊆ O is the alphabet of terminal objects,
– W0 ∈ Pfin(O◦) is the (finite) initial set of multisets over O,
– R ⊆ O◦ ×O◦ is the set of evolution rules, and
– δ is the derivation mode.

For all rules in R, we will require at least one of the sides to be non-empty, i.e.,

∀u→ v ∈ R : u 6= λ ∨ v 6= λ.

We immediately stress two major features of this definition. On the one hand, we
do not include any membrane structure. Indeed, asW0 hints, we simply use individual
multisets to represent the contents of the individual membranes, without explicitly
representing the membranes themselves. Incidentally, this means that membranes do not
nest in this model. On the other hand, the evolution of all symbols in (the multisets in)
all the membranes is governed by the same common set of rules R.

A configuration ofΠ is any set of multisets over O. Similarly to networked models
of computing like networks of evolutionary processors (e.g. [19]) or tissue P systems
with vesicles of multisets [5], a computation step in P systems with reactive membranes
consists of two stages:

1. splitting and merging,
2. evolution.

Informally, the splitting andmerging stage implements the non-deterministic evolution
of the membranes—individual multisets under this definition—as described in the
introduction: any two multisets may merge, and any multiset may split in two. The
evolution stage consists in applying the evolution rules in R to every multiset of the
configuration, according to the derivation mode δ. In the following paragraphs we give a
formal description of both stages, applied to a configurationWi ∈ Pfin(O◦).

P Systems with Reactive Membranes 33

Splitting and merging stage

1. Non-deterministically partitionWi into 3 subsets:

Wi = Mi ∪ Si ∪ Ii

such that |Mi| is even, and the sets Si, Mi, and Ii are mutually disjoint, i.e.,
Si ∩Mi = Si ∩ Ii = Mi ∩ Ii = ∅. The multisets inMi will be merged pairwise,
the multisets in Si will be split, and the multisets in Ii will remain intact.

2. Partition Mi into a set of disjoint pairs. Non-deterministically pick a bijection
ϕ : [1..|Mi|]→Mi and construct the following set:

M̂i = {(ϕ(2k − 1), ϕ(2k)) | 1 ≤ k ≤ |Mi|/2}.

Then defineM ′i = {w1 ∪ w2 | (w1, w2) ∈ M̂i}.
3. Define split(w) to be the set of all possible ways to split the multiset w into two

multisets:

split(w) = {(w1, w2) | w1 ∪ w2 = w,w1, w2 ∈ O◦}.

Define the set of all possible ways of splitting the multisets in Si:

Ŝi =
∏
w∈Si

split(w).

Non-deterministically pick S′i ∈ Ŝi.
4. Compute the new intermediate configuration as

W ′i = M ′i ∪ flatten(S′i) ∪ Ii,

where flatten(S′i) = {w1, w2 | (w1, w2) ∈ S′i}.

In the above presentation we describe merging before splitting, but the order of the
two substeps does not matter, since they occur on disjoint setsMi and Si. Furthermore,
we stress that multiple intermediate configurationsW ′i may be obtained from the same
configurationWi.

Evolution stage The evolution stage is defined in the conventional way by applying the
rules in R to every multiset inW ′i individually, according to the derivation mode δ:

Wi+1 = {w | w′ δ,R==⇒ w,w′ ∈W ′i},

where w is a multiset derived from w′ by applying the rules in R under the mode δ.

A configuration W is halting if no rules are applicable in the evolution stage, for
any intermediate configurationW ′ which can be obtained fromW in the splitting and
merging stage. An n-step halting computation of a P system with reactive membranesΠ
is a finite sequence of configurations (Wi)0≤i≤n such thatWi+1 is obtained fromWi by
the computation step described above, andWn is a halting configuration.

34 A. Alhazov et al.

As the result of a computation in a P system with reactive membranesΠ as defined
above we take all the terminal objects appearing in the membranes present in a halting
configurationWn: (⋃

w∈Wn

w

)∣∣∣∣∣
T

=
⋃

w∈Wn

w|T .

To conclude the introduction of P systems with reactive membranes, we again stress
that the splitting and merging of multisets (or membranes) is non-deterministic, imposed
in every computation step, and independent of the features of the configuration or of the
rules in R. More concretely, the rules in R cannot directly influence which symbols will
appear next to which after the splitting and merging stage.

Example 2. Consider the following P system with reactive membranes:

Π = (O, T,W0, R,max), where
O = {a, b, c, d, e, f},
T = {d, f},
W0 = {a, b, c},
R = {ab→ d, abc→ f, a→ e}.

For the first step of the computation,Π may decide to not split or merge any multisets
(M0 = S0 = ∅, I0 = W0), meaning that the evolution rules will be applied directly to
singleton multisets a, b, and c. While no rules are applicable to b or c individually, the rule
a→ e will have to be applied to a, yielding the next configurationW1 = {b, c, e}. We
can immediately conclude that the rules ab→ d and abc→ f will never be applicable
any more later in this computation, as there is no way to reintroduce a. In sum, this
halting computation yields the result Λ.

Now suppose that Π decides to merge the multisets a and b in the first step, yielding
the intermediate configurationW ′0 = {ab, c}. In this case a non-deterministic choice will
appear in the evolution stage between applying the rule ab→ d or a→ e (both singleton
sets of rules are non-extendable). As a consequence, the following two possibilities exist
for the second configuration: {d, c} and {eb, c}. In sum, these halting computations yield
the results d and Λ, respectively.

Finally, note that the rule abc → f will never be applicable with W0 = {a, b, c},
since putting a, b, and c together in one membrane requires at least two mergers, and a
will necessarily be consumed by a→ e or ab→ d along the way. On the other hand, if
we put together a, b and c in one multiset from the start, or even if we put ab together
and c apart, the rule abc → f will have a chance to be applied. In particular, in the
case in which the initial configuration is {ab, c} it suffices to consider the branch of the
computation along which Π decides to merge the two multisets in the first splitting and
merging stage. In sum, with the initial sets {ab, c} and {abc} we can get the results Λ, d,
and f . ut

As indicated by the example discussed above, it makes a difference in how many
multisets the initial multiset of objects is divided. Thus, we will use the notation
RenOP (δ, τ) to refer to the family of P systems with reactive membranes starting with
n initial multisets, running under the mode δ and using rules of type τ ∈ {coo,ncoo},

P Systems with Reactive Membranes 35

as well as the notations NRenOP (δ, τ) and PsRenOP (δ, τ) to refer to the family of
number languages and multiset languages, respectively, generated by the P systems with
reactive membranes from RenOP (δ, τ).

Whereas on the one hand the previous example shows the effect of having more
than one initial membrane, prohibiting the application of some evolution rules, the next
example shows that the halting condition can be fulfilled due to the fact that symbols are
distributed over several membranes, although some rule could be applied if all symbols
on its left-hand side could be put into the same membrane by a merge operation. As
merging can only combine the contents of two membranes, we can already get the
situation that a rule with three symbols in its left-hand side cannot be applied any more.

Example 3. Consider the following P system with reactive membranes:

Π = (O, T,W0, R,max), where
O = {ai, a′i, a′′i | 1 ≤ i ≤ 3} ∪ {f},
T = {a′′1 , a′′2 , a′′3 , f},
W0 = {a1a2a3},
R = {ai → a′i, a

′
i → a′′i , a

′′
1a
′′
2a
′′
3 → f}.

If in the first two steps of the computation, Π decides to not split or merge any
multisets, from W0 = {a1a2a3} with applying the rules {ai → a′i | 1 ≤ i ≤ 3},
after the first evolution step we obtainW1 = {a′1a′2a′3}, and by then applying the rules
{a′i → a′′i | 1 ≤ i ≤ 3}, after the second evolution step we obtain W2 = {a′′1a′′2a′′3}.
Keeping {a′′1a′′2a′′3} in the same membrane then allows for applying the rule a′′1a′′2a′′3 → f ,
thus obtaining the terminal resultW3 = {f}, asW3 is a halting configuration.

Yet with two splits, but still applying the rules {ai → a′i | 1 ≤ i ≤ 3} in the first
evolution step and the rules {a′i → a′′i | 1 ≤ i ≤ 3} in the second evolution step, we get
a two-step halting computation

{a1a2a3} =⇒ {a′1, a′2a′3} =⇒ {a′′1 , a′′2 , a′′3}

yielding the terminal result a′′1a′′2a′′3 .
We also mention that with having T = {f} only, this halting computation yields the

result Λ. ut

4 Computational Power: First Results

In this section, we list some first results regarding the computational power of P systems
with reactive membranes. We start by remarking that the halting condition can be checked
in an easier way when the system only includes non-cooperative rules.

Remark 1. When using only non-cooperative rules, the halting condition for a configu-
rationW can be checked without considering all possible splits and mergers and then
the non-applicability of the rules in all membranes; instead it suffices to check the
non-applicability of the rules to the objects in flatten(W), i.e., the union of the multisets
in all the membranes ofW .

36 A. Alhazov et al.

The following result even holds for non-cooperative rules and cooperative rules.

Lemma 1. For every Re1OP (δ, τ) system there exists an equivalent RenOP (δ, τ)
system, for every n > 1.

Proof. Given a P system with reactive membranes using rules of type τ

Π ′ = (O, T, {w}, R, δ),

an equivalent P system with reactive membranes using rules of type τ with n initial
membranes is

Π ′ = (O, T, {w,w2 = Λ, . . . , wn = Λ}, R, δ).
In an empty membrane Λ, no non-cooperative rules or cooperative rules are applicable.
Moreover, merging a membrane X with Λ yields X again, so no additional applications
of rules can happen. ut

Nowwe show that splitting and merging do not affect the (results of the) computations
in a P system with reactive membranes at all, no matter which derivation mode is
used, when only non-cooperative rules are used. Hence, we get a characterization of
PsL(REG):

Theorem 1. For any δ1, δ2 ∈ {asyn, seq,max, smax} and Y ∈ {N,Ps} as well as
any n ≥ 1,

Y RenOP (δ1,ncoo) = Y OP1(δ2,ncoo) = Y L(REG).

Proof. The equality Y OP1(δ2,ncoo) = Y L(REG) is folklore, e.g., see [24]. The main
idea for proving this result is that the evolution of symbols by applying non-cooperative
rules can be described by a derivation tree, but for the resulting terminal objects it is
completely irrelevant when the symbols evolve.

A similar argument now can be used here to argue that the following holds for any
δ1 ∈ {asyn, seq,max, smax}:

Y RenOP (δ1, ncoo) = Y OP1(asyn, ncoo) = Y L(REG).

(⇒) Given a P system with reactive membranes

Π ′ = (O, T, {w}, R, δ1),

we can easily define the equivalent simple P system

Π = (O, T,w,R, asyn).

Even distributing the contents of a single membrane over several membranes, even at
the beginning with having several initial multisets, does not affect the applicability of
the non-cooperative rules. Yet we have to mention that using the sequential derivation
mode in several membranes yields a kind of parallelism like smax, but also this
has no effect on the results of computations, especially as, according to Remark 1,
halting only depends on the non-applicability of all rules to the symbols in all the
multisets of the underlying configuration.

P Systems with Reactive Membranes 37

(⇐) Given a simple P system

Π = (O, T,w,R, asyn),

we can easily define the equivalent P system with reactive membranes

Π ′ = (O, T, {w}, R, asyn).

Any derivation of the 1-membrane transition P system Π operating under the
asynchronous derivation mode can be directly simulated by the P system with
reactive membranesΠ ′ which uses the same rules for the evolution stage, but then
always chooses to not split or merge any membranes, i.e.Mi and Si from the splitting
and merging stage are always empty. As we are only using non-cooperative rules,
the applicability of all the (multisets of) rules applied in Π is also guaranteed in Π ′.
Finally we can apply Lemma 1 to get an equivalent P system with reactive membranes
with n initial membranes.

In sum we see that P systems with reactive membranes behave as the corresponding
transition P system when only non-cooperative rules are used. ut

Finally, we show that P systemswith reactivemembranesworking under themaximally
parallel mode and using cooperative rules can simulate partially blind register machines.
As a reminder, we mention that partially blind register machines (PBRM) have programs
consisting of the following two types of instructions for incrementing and decrementing
a register:

– (p,ADD(r), q, s): in state p increment register r and jump to state q or state s;
– (p,SUB(r), q): in state p try to decrement register r; if successful, jump to state q,
otherwise abort the computation without producing a result.

Partially blind register machines feature a final zero check: the register machine only
halts with producing a result if all non-output registers are empty when the machine
reaches the halting instruction uniquely labeled by h.

We will refer to the set of multiset languages generated by partially blind register
machines by PsPBRM .

Theorem 2. For any δ ∈ {asyn, sequ,max, smax},

PsPBRM ⊆ PsRe1OP (δ, coo).

Sketch. The main idea of the proof is that throughout the simulation of the partially blind
register machine, the configurations of the P system with reactive membranes Π always
contain exactly one instance of the symbol representing the label of the instruction to
be carried out next. The contents of a register r is represented by the total number of
symbols ar in the configurations of Π .

The increment instruction (p,ADD(r), q, s) can be simulated directly by the rules
p→ qar and p→ sar.

38 A. Alhazov et al.

The decrement instruction (p,SUB(r), q) can be simulated by the following two
rules: par → q, p → p. Moreover, for every register symbol ar with r not being an
output register, we add the unit rules ar → ar.

Indeed, if p and a copy of ar find themselves in the same membrane, then a successful
decrement is simulated: the total number of copies of ar in the system is reduced by one.

If there are no copies of ar left in the system, then p only has the chance to be used
with the unit rule p → p; observe that in any derivation mode at least one rule has to
be applied if the system is not halting, i.e., as long as there still is a rule which can be
applied to some symbol. In this case, either p→ p and/or some unit rule ar → ar can
be applied in every future derivation step, hence, the computation will never halt.

If copies of ar do appear in the system, but not in the membrane containing p, then
p can use the unit rule p→ p, and in any derivation mode either only this rule and/or
other unit rules ar → ar can be applied. If in some future step, p and ar appear in the
same membrane, possibly par → q can be applied. Otherwise, again we obtain just
non-halting computation branches.

However, there must exist another branch in which no splits and mergers have
happened at all, i.e., p and ar are together, and in which the simulation therefore will
be able to proceed correctly. The same alternative holds if p and ar share the same
membrane, but the system non-deterministically would choose to only apply p → p
rather than par → p.

As soon as the halting label h appears, we have to use the final rule h → λ. The
final zero check is simulated by the unit rules ar → ar for all non-output registers r,
which keep the computation to go on forever if at least one such symbol ar is still present.
Observe that this argument does not depend on the distribution of the symbols in the
membranes of a configuration.

In sum, we conclude that the P system with reactive membranes Π can simulate the
computations of the given partially blind register machine correctly, but on the other
hand cannot yield more results. ut

Finally, we remark that the construction we show here is non-deterministic, even
if the simulated partially blind register machine is deterministic, i.e., all increment
instructions are of the form (p,ADD(r), q, q), which in a simpler way can be written as
(p,ADD(r), q).

5 Extensions

Given the motivation to use P systems with reactive membranes for thinking about the
emergence of space and space separations in abiotic environments, and also the richness
of the ecosystem of P systems variants, multiple extensions can be proposed.

A natural one to be considered would be limiting the size of individual membranes,
as real membranes do not generally grow very big. Limitations on the number of symbols
have already been considered in P systems [2], but combined with constant splitting and
merging this ingredient may have a drastically different impact. It would be necessary to
decide what happens when a membrane attains its maximal capacity. The approach in [2]
is to prevent it to accept new symbols, but in the context of reactive membranes it may

P Systems with Reactive Membranes 39

be appropriate to bias the splitting and merging stage of the computational step to force
such full membranes to split. The contribution of such limitations to the computational
power is yet unclear, but probably in some strong relation to the size of the left-hand
sides of the evolution rules.

An extension in the spirit of generalized P systems [13] would be to subject the rules
to splitting and merging. With such an extension, membranes would contain objects and
rules, and splitting and merging would affect not only which symbols can interact, but
also which rules will ensure their interaction.

Finally, splitting and merging could also be applied to rules: for example, a rule
u → v could split into two rules u → α and α → v, which could later merge back
into u→ v. Similarly to splitting and merging of membranes, splitting and merging of
rules delays some interactions. Relevance to thinking about the origins of life and the
computational power of this variant remain to be explored.

6 Conclusion and Perspectives

This paper is a first attempt at using P systems for thinking about the origins of life, and in
particular about the emergence of individual compartments separated by membranes. We
introduced P systems with reactive membranes, in which every symbol is conceptually
surrounded by elementary membranes, which then can merge to form bigger membranes,
or split. Mimicking biochemistry, the set of rules is common to all membranes—the
differences in the processes in different membranes should come from the symbols.
Cooperative rules are allowed, and probably even necessary to meaningfully implement
distinctions between membranes.

It is still an open research direction to actually illustrate some processes believed
to have happened during abiogenesis in P systems with reactive membranes. Perhaps
the most promising would be to implement autocatalytic cycles (e.g. [11]). The next
step would be to implement self-replication, as suggested by José M. Sempere in a
discussion. Indeed, in P systems with reactive membranes the membrane structure
emerges spontaneously, which makes them a promising candidate for implementing
self-replication of something other than symbol objects.

A parallel research direction which we started to explore in this paper is the
computational power of P systems with reactive membranes. We have shown here that
splitting and merging does not affect the computational power of P systems with reactive
membranes using non-cooperative rules—P systems with reactive membranes using
non-cooperative rules have the same computational power as simple P systems provided
we only start with one singleton multiset, no matter which derivation mode we use. Based
on this result, we have shown that P systems with reactive membranes can characterize
the family of Parikh sets of semilinear languages when using only non-cooperative rules
in any derivation mode.

Finally, when cooperative rules are allowed, P systems with reactive membranes can
generate all multiset languages generated by partially blind register machines.

Several questions still remain to be addressed, in particular: can splitting and merging
augment the computational power? It would indeed be surprising, but it has already been
shown that non-deterministic shuffling of rule right-hand sides allows for generating

40 A. Alhazov et al.

non-semilinear languages [1], meaning that random shuffling of symbol neighborhoods
as described in this paper may boost the power of the variant in some specific cases.

A subtle aspect which we do not discuss in depth in this paper is the halting condition
and the procedure for retrieving the result. There is an asymmetry between these two:
halting occurs when no more evolution rules are applicable after all possible splits and
mergers. On the other hand, getting out the result essentially happens by merging all
membranes into a single one.

Since the computational results we give in this paper seem to depend directly on the
halting condition and on the procedure for obtaining the result, it would be relevant to
explore how slight variations in these two affect the computational power of P systems
with reactive membranes.

Finally, in Section 5 we have suggested several possible extensions of the new variant.
A formal exploration of the computational power of such extensions would be quite
relevant. Even more importantly, it would be very relevant to identify which extensions
are more useful for using P systems with reactive membranes in thinking about the
origins of life.

Acknowledgements

The authors would like to thank the Organizing Committee of the 19th Brainstorming
Week on Membrane Computing7 (BWMC 2023) for organizing this fruitful event, which
allowed the authors to jointly develop the ideas presented in this paper. The authors would
also like to thank José M. Sempere for multiple helpful suggestions about self-replication
and emergence of space as well as the anonymous referees for their useful comments.

Artiom Alhazov acknowledges project 20.80009.5007.22 “Intelligent information
systems for solving ill-structured problems, processing knowledge and big data” by the
National Agency for Research and Development.

References

1. Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov. P systems with randomized right-hand
sides of rules. Theor. Comput. Sci., 805:144–160, 2020.

2. Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov. P systems with limited number of objects.
J. Membr. Comput., 3(1):1–9, 2021.

3. Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, and Marion Oswald. Variants of derivation
modes for which purely catalytic P systems are computationally complete. Theor. Comput.
Sci., 920:95–112, 2022.

4. Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, and Sergey Verlan. Variants of derivation
modes for which catalytic P systems with one catalyst are computationally complete. J. Membr.
Comput., 3(4):233–245, 2021.

5. Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, and Sergey Verlan. Tissue P systems with
vesicles of multisets. Int. J. Found. Comput. Sci., 33(3&4):179–202, 2022.

7http://www.gcn.us.es/19bwmc

http://www.gcn.us.es/19bwmc

P Systems with Reactive Membranes 41

6. Artiom Alhazov, Rudolf Freund, and Sergey Verlan. P systems working in maximal variants
of the set derivation mode. In Alberto Leporati, Grzegorz Rozenberg, Arto Salomaa, and
Claudio Zandron, editors,Membrane Computing – 17th International Conference, CMC 2016,
Milan, Italy, July 25-29, 2016, Revised Selected Papers, volume 10105 of Lecture Notes in
Computer Science, pages 83–102. Springer, 2016.

7. Artiom Alhazov and Tseren-Onolt Ishdorj. Membrane operations in P systems with active
membranes. Second Brainstorming Week on Membrane Computing, pages 37–44, 2004.

8. Bogdan Aman and Gabriel Ciobanu. Simple, enhanced and mutual mobile membranes. Trans.
Comp. Sys. Biology, 11:26–44, 2009.

9. Luca Cardelli and Gheorghe Păun. An universality result for a (mem)brane calculus based on
mate/drip operations. Int. J. Found. Comput. Sci., 17(1):49–68, 2006.

10. Matthew Cobb. 60 years ago, Francis Crick changed the logic of biology. PLOS Biology,
15(9):1–8, 09 2017.

11. Bruce Damer and David Deamer. The hot spring hypothesis for an origin of life. Astrobiology,
20(4):429–452, 2020.

12. Jürgen Dassow and Gheorghe Păun. Regulated Rewriting in Formal Language Theory.
Springer, 1989.

13. Rudolf Freund. Generalized P-systems. In Gabriel Ciobanu and Gheorghe Păun, editors,
Fundamentals of Computation Theory, 12th International Symposium, FCT ’99, Iasi, Romania,
August 30 – September 3, 1999, Proceedings, volume 1684 of Lecture Notes in Computer
Science, pages 281–292. Springer, 1999.

14. Rudolf Freund, Alberto Leporati, Giancarlo Mauri, Antonio E. Porreca, Sergey Verlan, and
Claudio Zandron. Flattening in (tissue) P systems. In Artiom Alhazov, Svetlana Cojocaru,
MarianGheorghe, Yurii Rogozhin, Grzegorz Rozenberg, andArto Salomaa, editors,Membrane
Computing, volume 8340 of Lecture Notes in Computer Science, pages 173–188. Springer,
2014.

15. Rudolf Freund and Marion Oswald. Tissue P systems and (mem)brane systems with mate and
drip operations working on strings. In Nadia Busi and Claudio Zandron, editors, Proceedings
of the First Workshop on Membrane Computing and Biologically Inspired Process Calculi,
MeCBIC@ICALP 2006, Venice, Italy, July 9, 2006, volume 171 (2) of Electronic Notes in
Theoretical Computer Science, pages 105–115. Elsevier, 2006.

16. Rudolf Freund and Sergey Verlan. A formal framework for static (tissue) P systems. In George
Eleftherakis, Petros Kefalas, Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa, editors,
Membrane Computing, 8th International Workshop, WMC 2007, Thessaloniki, Greece, June
25-28, 2007. Revised Selected and Invited Papers, volume 4860 of Lecture Notes in Computer
Science, pages 271–284. Springer, 2007.

17. Nicolas Glade. Le Vivant Rare, Faible et Amorphe - Évolution depuis les Origines jusqu’à la
Vie telle qu’elle nous Apparaît. (Rare, Weak and Amorphous Life – Evolution of Life from the
Origins until Life as it Appears Nowadays). HAL Open Archive, 2022.

18. Bulletin of the International Membrane Computing Society (IMCS). http://
membranecomputing.net/IMCSBulletin/index.php.

19. Sergiu Ivanov, Yurii Rogozhin, and Sergey Verlan. Small universal networks of evolutionary
processors. J. Autom. Lang. Comb., 19(1–4):133–144, 2014.

20. Shankara Narayanan Krishna and Gheorghe Păun. P systems with mobile membranes. Nat.
Comput., 4(3):255–274, 2005.

21. David Orellana-Martín, Luis Valencia-Cabrera, and Mario J. Pérez-Jiménez. P systems with
evolutional communication and separation rules. In Jérôme Durand-Lose and György Vaszil,
editors, Machines, Computations, and Universality – 9th International Conference, MCU
2022, Debrecen, Hungary, August 31 – September 2, 2022, Proceedings, volume 13419 of
Lecture Notes in Computer Science, pages 143–157. Springer, 2022.

http://membranecomputing.net/IMCSBulletin/index.php
http://membranecomputing.net/IMCSBulletin/index.php

42 A. Alhazov et al.

22. Linqiang Pan and Tseren-Onolt Ishdorj. P systems with active membranes and separation
rules. J. Univers. Comput. Sci., 10(5):630–649, 2004.

23. Gheorghe Păun. Computing with membranes. Journal of Computer and System Sciences,
61(1):108–143, 2000.

24. Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa, editors. The Oxford Handbook of
Membrane Computing. Oxford University Press, 2010.

25. Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Languages. Springer,
1997.

26. Rémi Segretain, Sergiu Ivanov, Laurent Trilling, and Nicolas Glade. A methodology for
evaluating the extensibility of Boolean networks’ structure and function. In Rosa M. Benito,
Chantal Cherifi, Hocine Cherifi, Esteban Moro, Luis Mateus Rocha, and Marta Sales-Pardo,
editors, Complex Networks & Their Applications IX - Volume 2, Proceedings of the Ninth
International Conference on Complex Networks and Their Applications, COMPLEX NET-
WORKS 2020, 1–3 December 2020, Madrid, Spain, volume 944 of Studies in Computational
Intelligence, pages 372–385. Springer, 2020.

27. Rémi Segretain, Laurent Trilling, Nicolas Glade, and Sergiu Ivanov. Who plays complexmusic?
On the correlations between structural and behavioral complexity measures in sign Boolean
networks. In 21st IEEE International Conference on Bioinformatics and Bioengineering,
BIBE 2021, Kragujevac, Serbia, October 25–27, 2021, pages 1–6. IEEE, 2021.

Queens of the Hill

Artiom Alhazov1, Sergiu Ivanov2, David Orellana-Martín3,4

1Vladimir Andrunachievici Institute of Mathematics and Computer Science,
The State University of Moldova, Academiei 5, Chis, inău, MD-2028, Moldova

artiom@math.md
2IBISC Laboratory, Université Paris-Saclay, Univ Évry

91020, Évry-Courcouronnes, France
E-mail : sergiu.ivanov@univ-evry.fr
3Research Group on Natural Computing,

Department of Computer Science and Artificial Intelligence,
Universidad de Sevilla

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: dorellana@us.es

4SCORE Laboratory, I3US, Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

Abstract. Inspired by the programming game Core Wars, we propose in this work
a framework and the organisation of king of the hill-style tournaments between
P systems. We call these tournaments Queens of the Hill and the individual
contestants valkyries. The goal of each valkyrie is to dissolve as many membranes
of as many other valkyries as possible, while at the same time resisting the attacks.
Valkyries are transition P systems with cooperative rules, target indication, and
rudimentary matter–anti-matter annihilation rules. These ingredients are sufficient
for computational completeness, but the context of Queens of the Hill reduces the
relevance of this statement. We give some tentative examples of strategies and
discuss their advantages and drawbacks. Finally, we describe how Queens of the
Hill can be used as a teaching exercise, and also a tool to federate the students’
creativity to push the frontiers of membrane computing.

Keywords: Core Wars, membrane dissolution, anti-matter, interaction.

1 Core Wars

To cite [12], “Core War (or Core Wars) is a programming game where assembly
programs try to destroy each other in the memory of a simulated computer.” In Core
Wars, programmers design programs—called warriors—with two goals in mind:

1. kill as many other programs as possible,
2. survive for as long as possible against the attacks of the other programs.

In the most basic setup, all programs are loaded in the same shared memory space,
and only feature instruction segments, i.e. their memory only contains code, and data

44 A. Alhazov, S. Ivanov, D. Orellana-Martín

is stored as part of some of the instructions. No memory protection is available for the
instructions, so all programs can write anywhere, including to the instruction segments
of competitors, which is the primary way of attacking. The simplest warrior is called
the Imp and only consists of a single instruction in the special assembly language called
Redcode:

MOV 0, 1

The numbers correspond to addresses in the memory space relative to the current
instruction, so 0 refers to the current instruction slot, and 1 refers to the next one. This
program copies its only instruction to the next memory slot, which then copies itself to
the next one, etc. The Imp therefore ends up populating the whole memory with copies
of itself.

As small and impressive as it is, the Imp will never actually win, because it just
reproduces itself, possibly over the code of the competitors, but it never kills any
competitor. To kill a process, Redcode features the special instruction DAT. When it is
executed, the current process is killed. A simple winning code would throw DAT over the
whole memory, while simultaneously avoiding to run this instruction in its own execution.
This is what the warrior called the Dwarf does, whose detailed presentation is given
in [12].

Multiple servers exist continuously running Code Wars tournaments in the king of
the hill mode (see section “Climbing the hill” in [12]): 10 to 30 warriors are loaded in the
same shared memory space and are run sequentially, on a single virtual processor, which
interleaves the execution of the instructions of every warrior. The score of a warrior in a
match roughly corresponds to the number of other warriors it has killed. The warrior
with the highest score is the current king of the hill, and the warrior with the lowest score
falls off the hill: it is replaced by a new warrior.

2 Queens of the Hill

In this submission we propose a framework for running king of the hill style tournaments
between P systems. We refer to such tournaments as (P) Queens of the Hill, and we call
individual contestants valkyries. In this section, we propose the formal framework to be
used for the valkyries as well as the rules for Queens of the Hill tournaments.

2.1 Valkyries

Our choice of the P system variant for the valkyries is guided by the following two
principles: ability to interact with the other contestants and ease of programming. We
choose here a variation on what is sometimes called transition P systems, which is
partially inspired by P automata with matter–anti-matter annihilation rules as shown
in [6] and by P colonies [3]. As a reminder, the original P automata rely on antiport rules
exclusively [4].

We define a (valkyrie) P system as the following tuple:

Π = (O,µ,w1, . . . , wn, R1, . . . , Rn), where

Queens of the Hill 45

– O = Σ ∪∆k is a finite alphabet of objects,
– ∆k = {δt, δ̄t | 1 ≤ t ≤ k} ∪ {δ} for some fixed k ∈ N,
– µ is the hierarchical membrane structure bijectively labeled by the numbers from 1
to n and usually presented as a sequence of correctly nested brackets,

– wi is the initial multiset in membrane i, 1 ≤ i ≤ n,
– Ri is the finite set of rules in membrane i, 1 ≤ i ≤ n.

The rules inRi feature full cooperation and may use target indications. More precisely,
a rule in Ri has the form u → v, where u ∈ Σ◦, u 6= λ, is a non-empty multiset over
Σ, and v ∈ (O × Tar)◦ is a multiset of symbols over O, each equipped with target
indications Tar = {in, here, out}. A symbol appearing with the indication in in v will
be sent into a non-deterministically chosen inner membrane of membrane i, a symbol
with the indication here will remain in membrane i, and a symbol with the indication out
will be sent to the parent membrane. If membrane i does not have any inner membranes,
the symbols with target indication in will be kept in membrane i, i.e. the target indications
in and here are equivalent in the case of elementary membranes. For readability, we
will always omit the indication here, i.e. instead of writing (a, here)(a, here)(b, out)
we will write aa(b, out).

The symbol δ ∈ ∆k has the special semantics of dissolving the membrane in which
it appears. More formally, once δ is introduced into membrane i, all of its objects and
inner membranes are moved to its parent membrane, and membrane i is removed from
the system—non-elementary membrane dissolution is allowed. Membrane dissolution
happens at the end of a computation step, and all introduced copies of δ are removed from
the system after all dissolutions are performed. It follows incidentally that introducing
any number of copies of δ in a membrane produces exactly the same as effect as
introducing one copy of δ. Dissolution of the outermost (skin) membrane is forbidden,
i.e. introducing a copy of δ into the skin membrane will have no effect and the symbol δ
will be immediately removed.

All sets Ri, 1 ≤ i ≤ n, also include the following rules:

Rδk = {δt → δt−1 | 2 ≤ t ≤ k} ∪ {δ1 → δ}
∪ {δtδ̄t → λ | 1 ≤ t ≤ k}.

Informally, the symbol δt is equipped with a timer which triggers the dissolution of the
containing membrane after t steps. The rules δtδ̄t → λ have weak priority, meaning that
if both a copy of δt and δ̄t are present, then they must be erased (annihilate), preempting
the evolution rule for δt1.

Since the left-hand sides of the rules in Ri \ Rδk are multisets over Σ, these rules
cannot directly detect or rewrite the symbols in ∆k. However, they can produce the

1We recall that in P systems weak priority of annihilation rules means that if both δt and δ̄t are
present in a configuration, then they must interact according to the annihilation rule δtδ̄t → λ,
even if other different rules involving δt or δ̄t are present. The opposite of weak priority is strong
priority—if rule r1 has strong priority over rule r2, then in the situations in which r1 may be
applied, r2 must not be applied, even if its left-hand side is a subset of the current configuration
and has no intersections with the left-hand side of r1. See [17] for further details on priorities
and [1] for an introduction on matter–anti-matter annihilation rules in P systems.

46 A. Alhazov, S. Ivanov, D. Orellana-Martín

anti-symbol δ̄t to force the annihilation of a symbol δt if it is present in the current
membrane.

The rules are applied in the maximally parallel way, with weak priority of the
annihilation rules δtδ̄t → λ. A computation steps proceeds in the classical fashion, by
first non-deterministically choosing a non-extendable multiset of rules to apply, applying
it, and performing all the necessary dissolutions. A halting configuration is a configuration
in which no more rules are applicable. We can consider halting computations of P systems,
but due to the continual nature of the tournament, we will generally consider infinite or
time-limited computations instead.

Example 1. Consider the following valkyrie P system:

Π = (O, [1[2[3]3]2]1, d, bδ̄1, a, R1, R2, R3),

O = {a, b, c, d} ∪∆2,

R1 = {d→ d, d→ d(δ2, in)} ∪Rδ2,
R2 = {bc→ b} ∪Rδ2,
R3 = {a→ aa(c, out), a→ δ} ∪Rδ2.

As a reminder, ∆2 = {δ2, δ1, δ} ∪ {δ̄1, δ̄2} and Rδ2 = {δ2 → δ1, δ1 → δ} ∪ {δ2δ̄2 →
λ, δ1δ̄1 → λ}. Figure 1 gives a graphical illustration of the P system above. For
conciseness, we omit the rules in Rδ2 from such graphical illustrations.

a→ aa(c, out)
a→ δ

a
3

bc→ b

bδ̄1

2

d→ d
d→ d(δ2, in)

d

1

Fig. 1: A simple valkyrie P system. The rules from Rδ2 are not represented.

The rule a → aa(c, out) in membrane 3 doubles some of the a, and also ejects
the corresponding number of c in membrane 2. The remaining copies of a are used to
produce δ, which will dissolve membrane 3, copying all instances of a it contains into
the parent membrane 2. The symbol b in membrane 2 will progressively erase all the
copies of c ejected by membrane 1.

The symbol d in the skin may choose between simply maintaining itself, or also
injecting δ2 into membrane 2. The first copy of δ2 injected into 2 will undergo the
evolution rule δ2 → δ1, and will afterwards annihilate with δ̄1 already present there
from the start. However, the second copy of δ2 the rule d → d(δ2, in) will inject into
membrane 2 will be free to produce δ in two steps thereby dissolving membrane 2.
If by this time the rule a → δ has not yet been applied in membrane 3, membrane 3
will become the direct inner membrane of membrane 1, so the next application of the
rule d→ d(δ2, in) will send δ2 in membrane 3, leading to its dissolution in two steps.

Queens of the Hill 47

Therefore, this valkyrie P system always converges to a cycle of configurations in which
there is only the skin membrane containing a copy of d, a copy of b, possibly some copies
of c, some copies of a, as well as a symbol from {δ2, δ1}, which always ticks down to δ
without any effect, since the dissolution of the skin membrane is disallowed. ut

2.2 Tournament Setup

The setup of Queens of the Hill tournaments is partially inspired by P colonies [3]: a
set of valkyrie P systems is grouped together in a big skin membrane, which always
sends back in whatever is sent out. More formally, we define anm-Queens of the Hill
tournament as the following tuple:

Q = (O,Π1, . . . ,Πm),

where O = Σ ∪ ∆k and Πj is a valkyrie P system as defined in Section 2.1. All P
systems Πj share the same sets of symbols Σ and O. The tournament Q is a P system
obtained by placing all Πj into a common outer membrane 0 with the empty initial
multiset and with the following set of rules:

R0 = {a→ (a, in) | a ∈ O} ∪Rδk.

In other words, R0 always sends in whatever symbols are sent out from the individual
valkyries, but due to non-determinism these symbols do not necessarily end up in the
valkyrie which produced them. Note that R0 contains 2 rules for symbols δt: such a
symbol may be sent in, or it may evolve into δt−1. As before, if the corresponding
anti-symbol δ̄t is also present, the annihilation rule δtδ̄t → λ will have to be applied.
Finally note that R0 is the only set of rules in which the left-hand sides are allowed to
include δt.

Π1

(1, 1)

Πm

(m, 1)

. . .

{a→ (a, in) | a ∈ O} ∪Rδk
0

Fig. 2: An informal picture of anm-Queens of theHill tournamentQ. The skinmembranes
of the valkyries Πj are relabelled as (j, 1).

A Queens of the Hill tournament obeys the same semantics as valkyrie P systems
defined in Section 2.1. In particular, this means that the dissolution of the skin membranes
of a valkyrie Πj is allowed, because at this time it is surrounded by the bigger skin
membrane of the whole tournament Q. To preserve consistent membrane labelling,
a membrane i in the valkyrie P system Πj is renamed into membrane (j, i) in the
tournament Q.

48 A. Alhazov, S. Ivanov, D. Orellana-Martín

2.3 Tournament Organization

Anm-Queens of the Hill tournament runs all the valkyries in the maximally parallel mode
multiple times and for a limited number of steps. At the end, the score of each valkyrie is
computed from the number of its membranes that was dissolved. Non-determinism in the
computations is resolved probabilistically, as it is done in the P-Lingua framework [5,7]:
at every non-deterministic branching point, one of the branches is chosen under the
uniform probability distribution.

More concretely, the tournament runs in the following way:

1. Run the computation for N steps, resolving non-determinism according to the
uniform probability distribution.

2. Repeat Step 1M times.

The score of a valkyrie is computed according to the following formula:

score(Πj) =
1

|Πj |

(
|Πj | −

1

M

M∑
i=1

dissi(Πj)

)
,

where dissi(Πj) is the number of membranes of Πj that were dissolved during the i-th
computation (i-th run of Step 1 above), and |Πj | is the total number of membranes inΠj .

Example 2. Suppose that Πj has 5 membranes, |Πj | = 5, and take M = 3. Further
suppose that 2, 3, and 4 membranes ofΠj were dissolved respectively in the first, second,
and third computations, i.e. diss1(Πj) = 2, diss2(Πj) = 3, and diss3(Πj) = 4. Then
the score of Πj in this tournament will be:

1

5

(
5− 2 + 3 + 4

3

)
=

2

5
.

Informally, the score of a valkyrie is howmanymembranes on average it retains by the end
of a computation of the tournament, normalized by its total number of membranes. ut

A valkyrie has the highest score of 1 if none of its membranes is ever dissolved in the
tournament. It has the lowest score of 0 if all its membranes are always dissolved.

2.4 Tournament Parameters

Table 1 summarizes the parameters governing a Queens of the Hill tournament that
were introduced in the previous sections. The values of these parameters may have a
significant impact on the strategies adopted by the individual valkyries. Smaller values
of |Σ| reduce the richness of the behaviors of a valkyrie and make it less robust to
perturbations coming from the skin membrane 0, i.e. from the other valkyries. Larger
values of k mean more opportunities for the symbols δt to be captured. Larger values
of m mean lower probability of receiving a symbol δt after emitting it into the skin
membrane 0. Shorter computation lengths N mean that lightning attacks may be more
feasible, while smaller values forM mean fewer computations in a tournament, which
increases the contribution of randomness to the outcome.

Queens of the Hill 49

|Σ| 10 The number of working symbols.
k 5 The maximal value of the index t in δt.
m 10–20 The number of entrants in the tournament.
N 1000 The length of a computation in the tournament.
M 50 The total number of computations in the tournament.

Table 1: A summary of the parameters governing a Queens of the Hill tournament,
together with the possible values for these parameters. We suggest these values based on
previous experience from running similar tournaments with multi-agent systems. These
values should be taken as a starting point for further exploration.

3 A Note on Computational Complexity

Valkyrie P systems as defined in Section 2 are quite obviously computationally complete,
even with a subset of the ingredients. In particular, full cooperation together with the
maximally parallel mode suffice to simulate arbitrary register machines. We refer the
reader to the first publication in membrane computing [16] for the very first proofs, as
well as to the more recent [11,17] for a sample of the wide variety of techniques for
proving computational completeness of P system variants. For the record and for the sake
of the discussion of the possible strategies in Queens of the Hill tournament, we briefly
recall a proof of computational completeness of P systems as defined above.

A (deterministic) register machine is an abstract computational device consisting
essentially of a finite set of registers and a program. The registers can contain natural
numbers or zero. The program consists of the following two types of instructions:

– (p,ADD(r), q): in state p, increment register r and go to state q;
– (p, SUB(r), q, s): in state p, check the value of register r; if its value is strictly

positive, decrement it and go to state q; otherwise go to state s.

Register machines are famously computationally complete. We refer the reader to [14]
for a much more in-depth discussion.

One-membrane valkyrie P systems can simulate both types of register machine
instructions, even without dissolution or anti-matter rules. Classically, the alphabet Σ
will include one symbol per state p of the register machine, and the value of register
r will be represented by the multiplicity of symbol ar. The instruction (p,ADD(r), q)
can be directly simulated by the rule p → qar. The simulation of (p,SUB(r), q, s) is
more intricate, as usual, and relies on non-determinism and maximal parallelism: the
symbol p non-deterministically guesses whether the register is empty, and a trap symbol
is produced if the guess is wrong. The following table lists the rules for both branches,
arranged by steps:

Decrement Zero test
1. p→ p̄1p̂1 p→ p̃1ṗ1
2. p̄1ar → p̄2, p̂1 → p̂2 ṗ1ar → #, p̃1 → p̃2
3. p̂2p̄2 → q, p̂2p̄1 → # p̃2ṗ1 → s

50 A. Alhazov, S. Ivanov, D. Orellana-Martín

The decrement branch begins by splitting the state symbol p into p̄1 and p̂1. The
symbol p̄1 erases a copy of ar if it is present in the system and evolves into p̄2. It does
not evolve if no copies of ar are present. At the same time, p̂1 evolves into p̂2. In the
third step, p̂2 evolves into q in the presence of p̄2, i.e. in the case in which the decrement
was successful. If the decrement could not happen, p̂2 finds p̄1, which produces the trap
symbol.

The zero test branch begins by splitting the state symbol p into p̃1 and ṗ1. The symbol
ṗ1 must evolve into the trap symbol # if it finds a copy of ar, as ṗ1ar → # is the only
rule which may transform ṗ1. In the meantime, p̃1 evolves into p̃2. If in the third step ṗ1
is still present in the system, this means that it did not find any copies of ar, the register
is empty, and the symbol s is produced. Otherwise p̃2 cannot evolve, but this also means
that a trap symbol was produced at step 2, meaning that the computation will never halt.

The argument above shows that the language of valkyries in Queens of the Hill
tournaments is rich enough. However, note how this argument relies on two essential
details which are partially relevant or even irrelevant in Queens of the Hill: non-
determinism and halting. On the one hand, non-determinism is resolved probabilistically,
meaning that not all possibilities will be explored, and that some of them may be
explored multiple times. Furthermore, proofs of computational completeness in P
systems classically consider the results produced at the end of halting computations,
while in Queens of the Hill halting does not have a central role. What is important in
Queens of the Hill is communicating with the other valkyries, i.e. attempting to dissolve
as many of their membranes as possible, as soon as possible. From this standpoint,
efficiency is important, while actual computational complexity is much less relevant, as
long as the valkyrie manages to attain a relatively high score. Finally, note how |Σ| is a
powerful tool for modulating the complexity and the efficiency of individual valkyries.

4 Tentative Strategies

The main goal of Queens of the Hill is turning P system design into a game involving
teams of students on the front line, backed by researchers collecting and systematizing
the explicit and implicit knowledge produced by the teams designing the valkyries. In
this section, we present several tentative strategies, whose efficiency or relevance will be
the subject of immediate future work.

One of the first strategies one may think of when seeing the rules of Queens of the
Hill is the Bomber: eject δt for some value of t into the skin membrane 0 and hope that
none of those symbols is sent back into the same membrane. The efficiency of the bomber

{a→ a(δt, out) | 1 ≤ t ≤ k}
a

1

Fig. 3: The Bomber.

decreases as the number of valkyries decreases. For example, when there is only one

Queens of the Hill 51

other valkyrie, the probability is quite high that the ejected δt lands back in the Bomber.
Note that this probability is not exactly 1

2 , since the rule δt → δt−1 can also be applied
in the skin, potentially until the production of δ.

The Bomber can be made more robust by making it accumulate copies of δ̄t for
some values of t, so that the symbols δt coming from the skin annihilate with the
corresponding copies of δ̄t. While this strategy can deal with an occasional δ̄t, it will be
quickly overwhelmed when sharing the tournament with a considerable population of
bombers.

{a→ aδ̄t(δt, out) | 1 ≤ t ≤ k}
a

1

Fig. 4: The Bar Bomber.

Another variation of the Bomber is the strategy of ejecting δ̄t in the hope of
neutralizing δt before it even gets into the valkyrie. This has the obvious disadvantage
that it will also protect the other valkyries from δt.

{a→ a(δ̄t, out)(δt, out) | 1 ≤ t ≤ k}
a

1

Fig. 5: The Anti-Bomber.

In case the number of competing valkyriesm—or an upper bound onm—is known,
robustly dealing with such bomber strategies is in fact not very difficult: it suffices to
ensure the presence of r(m− 1) copies of δ̄1 at all times, where r ∈ N \ {0} is a natural
factor which we discuss in the following paragraph. Indeed, it is not necessary to provide
for δ̄t for t > 1, as these symbols will inextricably tick down to δ1 and will have to
annihilate with δ̄1.

a→ aδ
r(m−1)
1

aδ
r(m−1)
1

1

Fig. 6: The Delta Wall.

The idea behind the factor r is that other strategies may try to beat the Delta Wall by
having rules emitting a large number of δt. However, the more such symbols are emitted,

52 A. Alhazov, S. Ivanov, D. Orellana-Martín

the lower the probability that they end up in the same valkyrie, meaning that the Delta
Wall will have a high degree of resilience, even for smaller values of r, like 3 or even 2.

Another protective strategy consists in wrapping the valkyrie in a couple of additional
membranes. In this way, the valkyrie can tolerate several membrane dissolutions without
being thrown out of the game.

a→ a(b, out)

a
2

{a→ (a, out) | a ∈ Σ}
1

Fig. 7: The 2-layer Onion.

Remark that the Onion will have trouble emitting δt symbols. Firstly, the rules in the
valkyrie are not allowed to contain δt in their left-hand sides, so the rules of the shape
δt → (δt, out) are not allowed. If instead of emitting δt a different symbol d is used,
then it is necessary to convert d into δt at some moment. If such conversion rules only
appear in the outermost membrane of the Onion, then dissolving that membrane will
remove those rules. On the other hand, including such rules in every layer of the Onion
will create the possibility that an inner level inadvertently causes the dissolution of an
outer level. Therefore, a strategy which may work best with the Onion would consist in
relying on the relative scarcity of the symbols in Σ and in trying to destabilize the other
valkyries by forcing some unexpected symbols into their membranes. For this to work,
|Σ| has to be sufficiently small.

Finally, the last tentative strategy we present in this section is the Bombshell. The
idea is to have multiple inner membranes which are all released into the skin membrane
of the tournament, therefore creating a family of cooperating agents belonging to the
same team. This allows for exceeding the total number of valkyiesm, but comes at the
price of dissolving a membrane, which will be reflected in the final score.

Subvalkyrie1
2

Subvalkyrie2
3

Subvalkyrie3
4

δ

1

Fig. 8: The scheme of a 3-charge Bombshell.

Queens of the Hill 53

5 Future Work and Perspectives

The immediate future work is setting up Queens of the Hill tournaments between
valkyries designed by teams of students taking a course in formal languages or in natural
computing. Queens of the Hill can be seen as a programming exercise in the language of an
unconventional model of computing with a concrete goal: attacking all other contestants
and surviving against their attacks for as long as possible. This context can also be used to
introduce questions from theoretical biology about evolution and robustness, somewhat
in the spirit of [18,19]. We remark that such exercises are quite widespread in teaching of
multi-agent systems and autonomic systems, as NetLogo-related resources illustrate [20].

To us as teachers and researches (enseignants-chercheurs as they say in French),
Queens of the Hill is a great opportunity to employ our students’ creativity to push the
frontiers of what can be done with P systems. In the particular setup we describe in this
paper we focus on transition P systems with non-elementary membrane dissolution and
some rudimentary matter-antimatter annihilation rules, a model directly supported by
P-Lingua. Obviously, other variants of P systems and the corresponding simulator engines
can be used as the underlying formalism, thereby stimulating the students’ interest in
these other variants. Among the salient examples we cite kernel P systems [8,13] and cP
systems [9,10,15].

While valkyrie P systems are in principle computationally complete (Section 3),
individual computational steps are less expressive than register machine instructions,
meaning that designing valkyries de facto explores the capabilities of a less powerful
language. Furthermore, good valkyrie design will require estimating the probabilities of
different branches of computation, which will encourage the students to delve deeper
into probability theory.

The setup we propose in this paper is at an early stage. We will most likely need to
further tune the values of the parameters in Table 1, and probably also adjust some aspects
of the definitions of valkyrie P systems as well as of the tournament in order to avoid
trivial edge cases and incite the design of complex strategies. An important question is
the relevance of the scoring function score(Πj) introduced in Section 2.3—other scoring
functions may better capture the results of the competition. It is also possible to define
scoring functions measuring the production of a certain set of symbols, thereby shifting
the focus away from membrane dissolution entirely. One could also think about tracking
the origins of the symbols, which could in principle allow saying which valkyrie dissolved
which other valkyrie. This would require a rather fine analysis of the computations.

On a final note, we remark that while Queens of the Hill tournaments are directly
inspired by Core Wars, the P system context shuffles things up quite a bit. In particular,
data is secondary in Core Wars, and warriors interact by writing over each other’s code.
If we take the rules to be the program in P systems, then the programs of the valkyries are
immutable in the sense that individual rules cannot be modified2. However, it is possible
to instantly and entirely erase parts of their programs by dissolving the corresponding
membranes. Furthermore, P systems are inherently non-deterministic, which we translate
into a probabilistic framework, while warriors in Core Wars are deterministic. These

2This may be an opportunity for plugging in polymorphic P systems and other P system
variants with dynamic rules [2].

54 A. Alhazov, S. Ivanov, D. Orellana-Martín

remarks make us believe that Queens of the Hill tournaments have great potential waiting
to be explored.

Acknowledgements

The authors would like to thank the Organizing Committee of the 19th Brainstorming
Week on Membrane Computing3 (BWMC 2023) for organizing this fruitful event.

References

1. Artiom Alhazov, Bogdan Aman, Rudolf Freund, and Gheorghe Paun. Matter and anti-matter in
membrane systems. In Helmut Jürgensen, Juhani Karhumäki, and Alexander Okhotin, editors,
Descriptional Complexity of Formal Systems - 16th International Workshop, DCFS 2014,
Turku, Finland, August 5-8, 2014. Proceedings, volume 8614 of Lecture Notes in Computer
Science, pages 65–76. Springer, 2014.

2. Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov. Polymorphic P systems: A survey.
Technical report, Bulletin of the International Membrane Computing Society, December 2016.

3. Lucie Ciencialová, Erzsébet Csuhaj-Varjú, Ludek Cienciala, and Petr Sosík. P colonies. J.
Membr. Comput., 1(3):178–197, 2019.

4. Erzsébet Csuhaj-Varjú and György Vaszil. P automata or purely communicating accepting
P systems. In Gheorghe Păun, Grzegorz Rozenberg, Arto Salomaa, and Claudio Zandron,
editors, Membrane Computing, International Workshop, WMC-CdeA 2002, Curtea de Arges,
Romania, August 19-23, 2002, Revised Papers, volume 2597 of Lecture Notes in Computer
Science, pages 219–233. Springer, 2002.

5. Ignacio Pérez-Hurtado et al. The P-Lingua Website. http://www.p-lingua.org/wiki/index.php/
Main_Page, Retrieved in May 2023.

6. Rudolf Freund, Sergiu Ivanov, and Ludwig Staiger. Going beyond turing with P automata:
Regular observer ω-languages and partial adult halting. Int. J. Unconv. Comput., 12(1):51–69,
2016.

7. Manuel García-Quismondo, Rosa Gutiérrez-Escudero, Miguel A. Martínez-del-Amor, Enrique
Orejuela-Pinedo, and Ignacio Pérez-Hurtado. P-lingua 2.0: A software framework for cell-like
P systems. Int. J. Comput. Commun. Control, 4(3):234–243, 2009.

8. Marian Gheorghe, Rodica Ceterchi, Florentin Ipate, Savas Konur, and Raluca Lefticaru. Kernel
P systems: From modelling to verification and testing. Theor. Comput. Sci., 724:45–60, 2018.

9. Alec Henderson and Radu Nicolescu. Actor-like cP systems. In Thomas Hinze, Grzegorz
Rozenberg, Arto Salomaa, and Claudio Zandron, editors, Membrane Computing - 19th
International Conference, CMC 2018, Dresden, Germany, September 4-7, 2018, Revised
Selected Papers, volume 11399 of Lecture Notes in Computer Science, pages 160–187.
Springer, 2018.

10. Alec Henderson, Radu Nicolescu, and Michael J. Dinneen. Solving a PSPACE-complete
problem with cP systems. J. Membr. Comput., 2(4):311–322, 2020.

11. Bulletin of the International Membrane Computing Society (IMCS). http://
membranecomputing.net/IMCSBulletin/index.php.

12. Ilmari Karonen. The beginners’ guide to Redcode. https://vyznev.net/corewar/guide.html,
version 1.23, August 11, 2020.

3http://www.gcn.us.es/19bwmc

http://www.p-lingua.org/wiki/index.php/Main_Page
http://www.p-lingua.org/wiki/index.php/Main_Page
http://membranecomputing.net/IMCSBulletin/index.php
http://membranecomputing.net/IMCSBulletin/index.php
https://vyznev.net/corewar/guide.html
http://www.gcn.us.es/19bwmc

Queens of the Hill 55

13. Savas Konur, Laurentiu Mierla, Florentin Ipate, and Marian Gheorghe. kPWorkbench: A
software suit for membrane systems. SoftwareX, 11:100407, 2020.

14. Ivan Korec. Small universal register machines. Theor. Comput. Sci., 168(2):267–301, 1996.
15. Radu Nicolescu and Alec Henderson. An introduction to cP systems. In Carmen Graciani

Díaz, Agustín Riscos-Núñez, Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa, editors,
Enjoying Natural Computing - Essays Dedicated to Mario de Jesús Pérez-Jiménez on the
Occasion of His 70th Birthday, volume 11270 of Lecture Notes in Computer Science, pages
204–227. Springer, 2018.

16. Gheorghe Păun. Computing with membranes. Journal of Computer and System Sciences,
61(1):108–143, 2000.

17. Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa, editors. The Oxford Handbook of
Membrane Computing. Oxford University Press, 2010.

18. Rémi Segretain, Sergiu Ivanov, Laurent Trilling, and Nicolas Glade. A methodology for
evaluating the extensibility of boolean networks’ structure and function. In Rosa M. Benito,
Chantal Cherifi, Hocine Cherifi, Esteban Moro, Luis Mateus Rocha, and Marta Sales-Pardo,
editors, Complex Networks & Their Applications IX - Volume 2, Proceedings of the Ninth
International Conference on Complex Networks and Their Applications, COMPLEX NET-
WORKS 2020, 1-3 December 2020, Madrid, Spain, volume 944 of Studies in Computational
Intelligence, pages 372–385. Springer, 2020.

19. Rémi Segretain, Laurent Trilling, Nicolas Glade, and Sergiu Ivanov. Who plays complexmusic?
On the correlations between structural and behavioral complexity measures in sign Boolean
networks. In 21st IEEE International Conference on Bioinformatics and Bioengineering,
BIBE 2021, Kragujevac, Serbia, October 25-27, 2021, pages 1–6. IEEE, 2021.

20. Uri Wilensky. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning
and Computer-Based Modeling, Northwestern University, Evanston, IL.

http://ccl.northwestern.edu/netlogo/

Pure 2D Eilenberg P Systems

Somnath Bera1, Atulya K. Nagar2, K.G. Subramanian2,∗, and Gexiang Zhang3

1 School of Advanced Sciences-Mathematics, Vellore Institute of Technology, Chennai, Tamil
Nadu 600 127 India

2 School of Mathematics, Computer Science and Engineering, Liverpool Hope University, Hope
Park, Liverpool L16 9JD, UK

(∗ Honorary Visiting Professor; Email: kgsmani1948@gmail.com)
3 School of Automation, Chengdu University of Information Technology, Chengdu, Sichuan,

China

Abstract. The computational power of Eilenberg P systems with string objects and
rewriting rules in generating languages, has been studied. Extending this system to
two dimensions, we introduce here an Eilenberg P system P2DEPS with rectan-
gular picture array objects and pure 2D context-free rules and examine the array
language generating power of these systems. We show that with two membranes,
any pure 2D context-free language can be generated. We also show that P2DEPS
has more generative power than pure 2D context-free grammar (P2DCFG). We
also compare P2DEPS with certain other picture array generating grammars.

Keywords: Eilenberg P system · pure context-free rules · pure 2D context-free
grammar.

1 Introduction

In the area of membrane computing [7,8], based on the biologically inspired computing
model of P system introduced by Gh. Pǎun with string objects and evolution rules
involving rewriting operation [6], a P system, called Eilenberg P system (EPS) was
introduced in [1]. An EPS involves an Eilenberg machine which is similar to a finite
state machine having associated with each transition, a specific set of evolution rules
that are context-free rewriting rules belonging to a region of the EPS. The EPS starts
in an initial state with an initial set of string objects. In the current state, with a current
set of string objects, the EPS evolves by applying the rules associated with one of the
transitions emerging out from the current state. The EPS continues its activity from the
next state of the transition. Here we extend the concept of an EPS to two dimensions by
introducing a P system, called pure 2D Eilenberg P system (P2DEPS) having picture
array objects and tables of pure 2D context-free rules [12] as evolution rules in its regions.
Here again as in the case of EPS, we have an Eilenberg machine with the evolution
rules from the regions associated with the transitions. We examine the picture array
generative power of P2DEPS and show that any pure 2D context-free language [10]
can be generated by a P2DEPS with two membranes and that P2DEPS has more
generative power than pure 2D context-free grammar (P2DCFG).We also compare
the generative power of P2DEPS with certain other picture array grammars.

Pure 2D Eilenberg P Systems 57

2 Preliminaries

For formal language theory related notions, the reader can refer to [9] and to [5,12] for
two-dimensional array grammars and languages. For P systems and array P systems we
refer to [6,11]. For the definitions of Eilenberg P system and Eilenberg machine we refer
to [1,3]. We now recall certain basic notions on words and picture arrays as well as the
definition of pure 2D context-free grammar [12].

A finite set T of symbols is called an alphabet. A word or a string w = a1a2 . . . am
ai ∈ T, 1 ≤ i ≤ m,(m ≥ 1) of length m over an alphabet T is a finite sequence of
symbols belonging to T. We denote by |w|, the length of the word w. The set of all
words over T , including the empty word λ with no symbols, is denoted by T ∗. For any
word w = a1a2 . . . an, t(w) is the vertical word with the word w written vertically. For

example, if w = aab over the alphabet {a, b}, then t(w) is
a
a
b
. A p× q array with p

rows and q columns (also called a p× q picture array)M over an alphabet T is of the
form

M =

a11 · · · a1q
...

. . .
...

ap1 · · · apq
where each aij ∈ T, 1 ≤ i ≤ p, 1 ≤ j ≤ q. We denote by |M |r, the number of rows of
M and by |M |c, the number of columns ofM. The set of all picture arrays over T is
denoted by T ∗∗, which includes the empty array λ. T++ = T ∗∗ − {λ}. A picture array
language is a subset of T ∗∗.

Definition 1. A pure 2D context-free grammar (P2DCFG) is given by
G = (T,R1, R2, X) where
• T is a finite set of symbols ;
• R1 = {ci|1 ≤ i ≤ m}, R2 = {rj |1 ≤ j ≤ n};
Each ci, (1 ≤ i ≤ m), called a column table, is a set of pure context-free rules of the
form a → α, a ∈ T, α ∈ T ∗ such that for any two rules a → α, b → β in ci, we have
|α| = |β|; Each rj , (1 ≤ j ≤ n), called a row table, is a set of pure context-free rules of
the form d→ t(γ), d ∈ T and γ ∈ T ∗ such that for any two rules d→ t(γ), e→ t(δ)
in rj , we have |γ| = |δ|;
• X ⊆ T ∗∗ − {λ} is a finite set of axiom arrays.

A derivation in a P2DCFG is defined as follows: For any two arraysM1,M2, we write
M1 ⇒M2 ifM2 is obtained fromM1 by either rewriting a column ofM1 by rules of
some column table ci in R1 or a row ofM1 by rules of some row table rj in R2. The
reflexive transitive closure of⇒ is denoted by⇒∗ .
The picture array language L(G) generated by G is the set of picture arrays
{M |M0 ⇒∗ M ∈ T ∗∗, for someM0 ∈ X}.

The family of picture array languages generated by pure 2D context-free grammars is
denoted by P2DCFL.

58 S. Bera et al.

M0 =

a b a

e d e

a b a

⇒
a b b a

e d d e
a b b a

⇒

a b b a

a b b a

e d d e

a b b a

a b b a

⇒

a b b b a
a b b b a
e d d d e
a b b b a
a b b b a

= M1

Fig. 1: DerivationM0 ⇒∗ M1

We illustrate picture array generation in a P2DCFG with an example.

Example 1. Consider the pure 2D context-free grammar G1 = (T,R1, R2, {M0}})
where T = {a, b, d, e}, R1 = {c}, R2 = {r}. The column table c and the row table r

are given by c = {b→ bb, d→ dd}, r =

 a
e→ e

a
,

b
d→ d

b

 , M0 =
a b a
e d e
a b a

On using c, r, c in this order, we have the derivationM0 ⇒∗ M1, which is shown in Fig.
1. The symbols rewritten in a column or a row are enclosed in boxes in the Figure.

3 Pure 2D Eilenberg P System

We now introduce a new array P system, called pure 2D Eilenberg P system (P2DEPS)
extending the definition of EPS to two dimensions with the regions of the P system
having rectangular picture array objects and pure 2D context-free grammar type of tables
of rules but the picture arrays evolve on applying the rules of the tables in the regions
that are associated with a transition emerging out of the current state. Thus the definition
of the two-dimensional extension of EPS is very similar to the string case [1,3] except
that a deterministic version of the Eilenberg machine is used in the sense that the system
from a given state moves to at most one state on reading the label of a transition. Some
or all the states can be final states. The working of the two-dimensional extension of
EPS is also similar to the string case except that the result, namely, the picture array
generated, is collected in a designated output region of the system.

Definition 2. A pure 2D Eilenberg P system (P2DEPS) is given by Π =
(µ, T,Q,X1, · · · , Xn, C, δ, q0, F, io) where

(i) µ is a membrane structure having n membranes;
(ii) T is the alphabet of the system;
(iii) Q is a finite set of states;
(iv) Xi, (1 ≤ i ≤ n) is a finite set (which can be empty) of picture arrays representing

the initial value in the region labelled i;

Pure 2D Eilenberg P Systems 59

(iv) C = (C1, · · · , Cp), where for 1 ≤ i ≤ p, the component Ci = (Pi,1, · · · , Pi,n)
with Pi,j , a finite set (which can be empty) of column and/or row tables of pure 2D
context-free grammar rules (as in Definition 1) with a target (here, in or out) for
each table of rules and the elements of Pi,j belong to region i;

(v) δ : Q× C;→ Q is the next-state function;
(vi) q0 is the initial state;
(vii) F is a set of final states;
(viii) i0 is the label of the output region where the result of the system is collected.

A computation in a P2DEPS takes place as follows: A computation starts with the
initial state q0 and the initial configuration of the system (M1, · · · ,Mn). A column or a
row table of pure context-free rules in the component associated with the transition
emerging out of q0, is used to rewrite (with the rewriting done as in a pure 2D context-free
grammar) the picture arrays in the corresponding region. At a time, only one table of
rules can be applied to a picture array rewriting a column or a row of symbols and all
the picture arrays which can be rewritten are to be rewritten The picture arrays evolved
either remain in the same region or are sent to an immediate inner or outer region
depending on the target here, in or out indicated with the table of rules. The process is
continued using a table of rules in the component associated with a transition from the
current state to which the system reaches from an immediate earlier step. At a given step
of computation, a picture array in a region to which a non-deterministically chosen
table of rules in the component used is applicable, is rewritten (as done in a pure 2D
context-free grammar), thus evolving the picture array. The process repeats and the
resulting configuration of the system in a computation step consists of picture arrays
evolved at that moment. A computation halts when no table of rules associated with the
current transition is applicable to the picture arrays in the regions. When the system
reaches a final state and a halting computation, the picture arrays collected in the output
region i0 constitute the picture array language L(Π) generated by the P2DEPS.

The family of picture array languages generated by P2DEPS is denoted by
L(P2DEPS). If we indicate the three parameters, namely, the number of membranes
at most m, the number of states at most s and the number of components at most p,
then we denote the system by P2DEPS(m, s, p) and the corresponding family by
L(P2DEPS(m, s, p)).

We illustrate with an example.

Example 2. Consider the P2DEPS(1, 3, 3)
Π1 = ([1]1, {a, b, d, e}, {q1, q2, q3}, X1, C, δ, q1, 1, {q3}) where
C = (C1, C2, C3), δ(q1, C1) = q2, δ(q2, C2) = q1, δ(q1, C3) = q3, with C1 =
({c1}), C2 = ({r}), C3 = ({c2}). The column tables c1, c2 are given by c1 =
{e → aeb, d → ddd}, c2 = {e → ab, d → dd}. The row table r is given by

r = {a→ a
d
, e→ e

d
, b→ b

d
}.All the tables of rules have the target here. X1 = {M1},

with the initial value in the region beingM1 =
a e b
d d d

.

The picture array languageL(Π1) generated byΠ1 consists of (n+1)×(2n+2), (n ≥ 1),

60 S. Bera et al.

picture arraysM whereM1j = a for 1 ≤ j ≤ n+ 1, M1j = b, for n+ 2 ≤ j ≤ 2n+ 2
and all other entries are d. A picture array of L(Π1) is shown in Fig. 2. The P2DEPS

a · · · a e b · · · b
d · · · d d d · · · d
...
. . .

...
...
...
. . .

...
d · · · d d d · · · d

Fig. 2: A picture array of L(Π1)

Π1 has only one membrane with an initial value, namely, the picture arrayM1 in the
membrane. The systemΠ1 starts in the initial state q1. If the emerging transition at q1
given by δ(q1, C1) = q2 is used, then the rules of the column table c1 are used to rewrite
the column t(ed) of the only initial picture arrayM1 to yield a picture array

M2 =
a a e b b
d d d d d

.

The next state reached by the system is q2. The system now uses the only emerging
transition given by δ(q2, C2) = q1 and so the rules of the row table r are applied rewriting
the row aaebb ofM2 yielding the picture array

M3 =
a a e b b
d d d d d
d d d d d

while the system reaches the next state q1. The process can repeat as many times as
needed until the emerging transition at q1 given by δ(q1, C3) = q3 is used which makes
the system reach the final state q3 while the rules of the column table c2 are applied to
the picture array rewriting the symbols in the column t(ed · · · d) and yielding the picture
array of the form shown in Fig. 2. The computation halts as there is no outgoing transition
in the state q3. Since the system reaches a halting computation and is also in the final
state, the picture array generated is collected in the picture array language L(Π1). In fact
L(Π1) belongs to the family L(P2DEPS(1, 3, 3)).

4 Comparison results

We now compare the picture array generative power of P2DEPS with P2DCFG.We
show that a P2DCFL can be generated by a P2DEPS with two membranes, one state
and two components. We also construct such a P2DEPS generating a picture array
language that cannot be generated by any P2DCFG.

Theorem 1. P2DCFL ⊆ L(P2DEPS(2, 1, 2))

Pure 2D Eilenberg P Systems 61

Proof. Consider a P2DCFG G = (T,R1, R2, X) generating a picture array language
L. We construct a P2DEPS Π = ([1[2]2]1, T, {q1}, X, C, δ, q1, {q1}, 2) where C =
(C1, C2) with C1 = (R1 ∪R2, ∅) C2 = ({c}, ∅) where the column table c = {a→ a |
a ∈ T}. δ(q1, C1) = δ(q1, C2) = q1. The tables of rules that belong to R1 ∪ R2 have
the target here and the column table c has the target in. Corresponding to a derivation in
the P2DCFG G, a computation in the P2DEPS Π is done as follows: The system
Π starts in the initial state q1 and an initial value which is an axiom picture array from
X in the membrane with label 1. Since δ(q1, C1) = q1, rules of a column or row table
in R1 ∪R2 can be applied simulating a corresponding step of derivation in G with the
system remaining in the state q1 itself. Thus a sequence of derivation steps in a derivation
in G will be captured in the computation in Π. At any intermediate step of computation,
the system Π can use the rules of the column table c rewriting any column in the picture
array of that intermediate step. The application of the rules of the column table c does
not change the picture array but the picture array is sent to the inner membrane with label
2. The computation halts as there are no rules (of the region 2) in the components that
can be applied and the system is in the final state q1 itself. Thus every picture array of
L is collected in the output region 2. This proves the inclusion in the statement of the
theorem.

Theorem 2. L(P2DEPS(2, 1, 2))− P2DCFL 6= φ.

Proof. We now consider a P2DEPS

Π1 = ([1[2]2]1, {a, b, e}, {q1}, {M0}, C, δ, q1, {q1}, 2) where M0 =
a e b
a e b

,

C = (C1, C2) with C1 = ({c1, r}, ∅) C2 = ({c2}, ∅) where the column tables

are c1 = {e → aeb}, c2 = {e → ab}, the row table is r = {a → a
a
, b → b

b
, e → e

e
},

δ(q1, C1) = δ(q1, C2) = q1. The tables c1 and r have the target here and the table c2
has the target in. The system Π1 generates a picture array language L1 consisting of
m×2n (m ≥ 2, n ≥ 2) picture arraysM such thatMij = a for 1 ≤ i ≤ m, 1 ≤ j ≤ n,
andMij = b for 1 ≤ i ≤ m,n+ 1 ≤ j ≤ 2n. A picture array of L1 is shown below:

a · · · a b · · · b
...
. . .

...
...
. . .

...
a · · · a b · · · b

.

In fact the system Π1 starts in the initial state q1 with the initial picture arrayM0 in the
region with label 1. If the transition δ(q1, C2) = q1 is used, then the rules of the column

table c2 are applied toM0 which evolves into the picture arrayM1 =
a a b b
a a b b

. M1 is

sent to the region with label 2. The computation halts with the system in the only state q1
which is a final state. The picture arrayM1 is collected in the language. If the transition
δ(q1, C1) = q1 is used and the rules of the column table c1 are applied toM0, then it

evolves into the picture array a a e b b
a a e b b

that remains in the same membrane. The process

can continue and at any step of computation, the rules of the row table r can be used if

62 S. Bera et al.

the transition selected is δ(q1, C1) = q1 and a row of the form akebk (for some k ≥ 1
) is added to the picture array. Again if the transition δ(q1, C2) = q1 is selected with
the system continuing in the state q1, then the picture array generated is sent to region
with label 2 and the computation halts. As the state q1 is a final state, the picture array
generated is collected in the language L1. But this language cannot be generated by any
P2DCFG. If such a P2DCFG G1 generates L1, then starting from an axiom picture
array, a column of a′s or a column of b′s are to be rewritten by rules of a column table of
rules. But then any pure context-free rule for a or b will only yield pictures not in the
language since every picture array in L1 has a certain number of continuous columns
(starting from the first column) of a′s followed by an equal number of columns of b′s.
A two-dimensional picture array generating grammar, called regular matrix grammar
(RMG), was introduced in [10] and extensively investigated in many studies. This
two-dimensional grammar was later renamed as two-dimensional right-linear grammar
(2RLG) [5]. Extensions of RMG to the context-free and context-sensitive cases have
been considered in [10] and their properties have been studied. We refer to these
two-dimensional grammars as two-dimensional context-free grammar (2CFG) and
two-dimensional context-sensitive grammar (2CSG) in line with the naming of 2RLG.
We compare the generative power of P2DEPS with those of 2RLG, 2CFG, and
2CSG. In all these three grammars, namely, 2RLG, 2CFG, 2CSG, there are two
phases of derivations with the first phase involving respectively, regular, context-free and
context-sensitive string grammars generating a string language over a set of symbols,
called intermediates. Every string of intermediates obtained in the first phase is rewritten
in the second phase in all these three grammars in the vertical direction using nonterminal
regular grammar rules of the form A → aB applied together or terminal rules of the
form A→ a that are applied together, to generate the columns of the picture arrays over
terminal symbols. The families of picture languages generated by 2RLG, 2CFG, 2CSG
are respectively denoted by 2RLL, 2CFL, 2CSL.

Theorem 3. L(P2DEPS(2, 1, 2))− 2RLL 6= ∅.
Proof. Consider the picture array language L2 consisting of m × (2n + 1) (n ≥ 1)
picture arrays M such that M1j = a, for 1 ≤ j ≤ n, M1(n+1) = d, M1j = b, for
n+ 2 ≤ j ≤ 2n+ 1, Mij = d, otherwise. A P2DEPS with two membranes, 1 state
and 2 components, generating L2 is given by

Π ′2 = ([1[2]2]1, {a, b, e, d}, {q1}, {M0}, C, δ, q1, {q1}, 2) where M0 =
a e b
d d d

,

C = (C1, C2) with C1 = ({c1, r}, ∅), C2 = ({c2}, ∅), where the column ta-
bles are c1 = {e → aeb, d → ddd}, c2 = {e → d, d → d}, the row table

r = {a → a
d
, b → b

d
, e → e

d
}. δ(q1, C1) = q1, δ(q1, C2) = q1. The tables of rules

c1, r have the target here and c2 has target in. The systemΠ ′2 starts in the initial state q1
with the initial picture arrayM0 in region with label 1. If the transition δ(q1, C2) = q1 is
used, then the rules of the column table c1 or the rules of the row table r are applied to
M0 yielding a picture array which remains in the same membrane and the next state is
the same state q1. The process can repeat as many times as needed generating a picture
array of the form

Pure 2D Eilenberg P Systems 63

a · · · a e b · · · b
d · · · d d d · · · d
...
. . .

...
...
...
. . .

...
d · · · d d d · · · d

.

With the system at the state q1, if the transition δ(q1, C2) = q1 is used, then the rules
of the column table c2 are applied to the picture array evolved at that moment yielding
a picture array belonging to L2. This picture array is collected in the language as the
computation halts with the system remaining in the final state q1. But the picture array
language L2 cannot be generated by any 2RLG since the first rows of the picture arrays
constitute a context-free language, namely {andbn | n ≥ 1}. This would mean that a
2CFG will be required to generate L2.

Theorem 4. L(P2DEPS(1, 2, 2))− 2RLL 6= ∅.

Proof. The picture array language L2 considered in the proof of Theorem 3 cannot be
generated by any 2RLG as seen in the proof of Theorem 3. A P2DEPS with one
membrane, 2 states and 2 components, generating L2 is given by

Π2 = ([1]1, {a, b, d1, d2, e, d}, {q1, q2}, {M0}, C, δ, q1, {q2}, 1) whereM0 =
d1 e d2
d d d

,

C = (C1, C2) with C1 = ({c, r1}), C2 = ({r2}), where the column table is

c = {e → d1ed2, d → ddd}, the row tables are r1 = {d1 →
d1
d
, d2 →

d2
d
, e → e

d
},

r2 = {d1 → a, d2 → b, e → d}. δ(q1, C1) = q1, δ(q1, C2) = q2. The tables of rules
have the target here. The system Π2 starts in the initial state q1 with the initial picture
arrayM0 in region with label 1. If the transition δ(q1, C1) = q1 is used, then the rules of
the column table c or the rules of the row table r1 are applied toM0 yielding a picture
array which remains in the same membrane and the next state is the same state q1. The
process can repeat as many times as needed generating a picture array of the form

d1 · · · d1 e d2 · · · d2
d · · · d d d · · · d
...
. . .

...
...

...
. . .

...
d · · · d d d · · · d

.

With the system at the state q1, if the transition δ(q1, C2) = q2 is used, then the rules
of the row table r2 are applied to the picture array evolved at that moment yielding a
picture array of the form

a · · · a d b · · · b
d · · · d d d · · · d
...
. . .

...
...
...
. . .

...
d · · · d d d · · · d

.

This picture array is collected in the language as the computation halts with the system
reaching a final state q2.

64 S. Bera et al.

Theorem 5. L(P2DEPS(2, 2, 4))− 2CFL 6= ∅.
Proof. Consider the picture array languageL3 consisting ofm×(3n+2) (m ≥ 2, n ≥ 1)
picture arraysM such thatM1j = a, for 1 ≤ j ≤ n, M1j = b, for n+ 2 ≤ j ≤ 2n+ 1,
M1j = e, for 2n + 3 ≤ j ≤ 3n + 2, Mij = d, otherwise. A P2DEPS with two
membranes, 2 states and 4 components, generating L3 is given by
Π3 = ([1[2]2]1, {a, b, e, e1, e2}, {q1, q2}, {M0}, C, δ, q1, q1, 2) where

M0 =
a e1 b e2 e
d d d d d

, C = (C1, C2, C3, C4) with C1 = ({r1}, ∅),

C2 = ({c1}, ∅), C3 = ({c2}, ∅), C4 = ({r2}, ∅) where the column ta-
bles are c1 = {e1 → ae1b, d → ddd}, c2 = {e2 → e2e, d → dd}, the

row tables are r1 = {a → a
d
, e1 →

e1
d
, b → b

d
, e2 →

e2
d
, e → e

d
, },

r2 = {a → a, b → b, e → e, e1 → d, e2 → d}, δ(q1, C1) = q1, δ(q1, C2) = q2,
δ(q2, C3) = q1, δ(q1, C4) = q1. The column tables of rules c1, c2 and the row table of
rules r1 have the target here and the table of rules r2 has target in. The systemΠ3 starts
in the initial state q1 with the initial picture arrayM0 in the region with label 1. If the
transition δ(q1, C4) = q1 is used, then the rules of the row table r2 are applied toM0

yielding a picture array of the form a d b d e
d d d d d

which is sent to the output region 2 while

the system If the transition δ(q1, C1) = q1 is used, then the rules of the row table r1 are
applied toM0 yielding a picture array with a row of d′s added below the first row. This
picture array remains in the same membrane and the next state is the same state q1. The
process can repeat as many times as needed generating a picture array of the form

a e1 b e2 e
d d d d d
...

...
...
...
...

d d d d d

.

If the transition δ(q1, C2) = q2 followed by δ(q2, C3) = q1 are used, then the rules of
the column table c1 are applied followed by the application of the rules of the column
table c2 to the picture array remaining in region 1, generating a picture array of the form

a · · · a e1 b · · · b e2 e · · · e
d · · · d d d · · · d d d · · · d
...
. . .

...
...
...
. . .

...
...
...
. . .

...
d · · · d d d · · · d d d · · · d

.

Note that this process can be repeated with the state moving from q1 to q2 and returning
back to q1.When the system is at the state q1, if the transition δ(q1, C4) = q3 is used,
then the rules of the row table r2 are applied to the picture array evolved at that moment
yielding a picture array of the form

a · · · a d b · · · b d c · · · c
d · · · d d d · · · d d d · · · d
...
. . .

...
...
...
. . .

...
...
...
. . .

...
d · · · d d d · · · d d d · · · d

.

Pure 2D Eilenberg P Systems 65

This picture array is collected in the language as the computation halts with the system
reaching the final state q1. But the picture array language L3 cannot be generated by any
2CFG since the first row of the picture arrays constitute a context-sensitive language,
namely {andbndcn | n ≥ 1}. This would mean that a 2CSG will be required to generate
L2.

Theorem 6. L(P2DEPS(1, 3, 4))− 2CFL 6= ∅.

Proof. The picture array language L3 considered in the proof of Theorem 5 cannot be
generated by any 2CFG as seen in the proof of Theorem 5. A P2DEPS with one
membrane, 3 states and 4 components, generating L3 is given by
Π3 = ([1]1, {a, b, d1, d2, d3, e, d}, {q1, q2, q3}, {M0}, C, δ, q1, {q3}, 1) where

M0 =
d1 e1 d2 e2 d3
d d d d d

, C = (C1, C2, C3, C4) with C1 = ({r1}),

C2 = ({c1, }) C3 = ({c2, }), C4 = ({r2}) where the column tables are
c1 = {e1 → d1e1d2, d → ddd}, c2 = {e2 → e2d3, d → dd}, the row

tables are r1 = {d1 →
d1
d
, e1 →

e1
d
, d2 →

d2
d
, e2 →

e2
d
, d3 →

d3
d
, },

r2 = {d1 → a, d2 → b, d3 → c, e1 → d, e2 → d}. δ(q1, C1) = q1, δ(q1, C2) = q2,
δ(q2, C3) = q1, δ(q1, C4) = q3. All the tables of rules have the target here. The system
Π3 starts in the initial state q1 with the initial picture arrayM0 in the region with label 1.
If the transition δ(q1, C1) = q1 is used, then the rules of the row table r1 are applied to
M0 yielding a picture array which remains in the same membrane and the next state is
the same state q1. The process can repeat as many times as needed generating a picture
array of the form

d1 e1 d2 e2 d3
d d d d d
...

...
...

...
...

d d d d d

.

If the transition δ(q1, C2) = q2 followed by δ(q2, C3) = q1 are used, then the rules of
the column table c1 are applied followed by the application of the rules of the table c2 to
the picture array remaining in region 1, generating a picture array of the form

d1 · · · d1 e1 d2 · · · d2 e2 d3 · · · d3
d · · · d d d · · · d d d · · · d
...
. . .

...
...

...
. . .

...
...

...
. . .

...
d · · · d d d · · · d d d · · · d

.

When the system is at the state q1, if the transition δ(q1, C4) = q3 is used, then the rules
of the row table r2 are applied to the picture array evolved at that moment yielding a
picture array of the form

a · · · a d b · · · b d c · · · c
d · · · d d d · · · d d d · · · d
...
. . .

...
...
...
. . .

...
...
...
. . .

...
d · · · d d d · · · d d d · · · d

.

66 S. Bera et al.

This picture array is collected in the language as the computation halts with the system
reaching the final state q3.

5 Conclusion

We have introduced here an extension of the string language generating Eilenberg P
system (EPS) to two dimensions with sets of pure 2D context-free rules in the regions of
the system. The resulting P system, namely, P2DEPS generates picture array languages.
It will be of interest to compare the generative power of P2DEPS with other picture
array grammar models such as [2,4].

Acknowledgement

The authors thank the reviewers for their very useful and relevant comments which helped
them to prepare this revised version. This work was supported by the National Natural
Science Foundation of China (61972324), the Sichuan Science and Technology Program
(23NSFTD0049, 23ZDYF0247, 2022YFG0181).

References

1. Balanescu, T., Gheorghe, M., Holcombe, M., Ipate, F.: Eilenberg P systems, In: Gh. Pǎun et al
(eds): WMC – CdeA 2002, LNCS 2597, pp. 43-57, 2003.

2. Bera, S., Ceterchi, R., Sriram, S., Subramanian,K.G.: Array P systems and pure 2D context-free
grammars with independent mode of rewriting. J. Membr. Comput. 4(1): 11-20 (2022)

3. Bernardini, Gheorghe, M., Holcombe, M. :PX Systems = P Systems + X Machines, Natural
Computing, 2, 201-213 (2003).

4. Fernau, H., Freund, R., Ivanov, S., Schmid, M.L., Subramanian, K.G. : Array Insertion
and Deletion P Systems. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds)
Unconventional Computation and Natural Computation. UCNC 2013. Lecture Notes in
Computer Science, vol 7956. Springer, Berlin, 67-78.

5. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salomaa, G.
(eds.) Handbook of Formal Languages, pp. 215—267. Springer, Berlin (1997).

6. Pǎun, Gh. : Computing with membranes, J. Comp. System Sci., 61, 108– 143 (2000).
7. Păun, Gh.: Membrane Computing: An Introduction. Springer-Verlag Berlin, Heidelbrg, 2000.
8. Păun, Gh., Rozenberg, G., Salomaa, A. : The Oxford Handbook of Membrane Computing.

Oxford University Press, Inc., New York, NY, USA (2010)
9. Rozenberg, G., Salomaa, A. (Eds.): Handbook of Formal Languages. Vols. 1 - 3, Springer-Verlag,

Berlin (1997).
10. Siromoney, G., Siromoney, R., Krithivasan, K.: Abstract families of matrices and picture

languages. Computer Graphics and Image Proc. 1, 284–307 (1972).
11. Subramanian, K.G. : P systems and picture languages. Lecture Notes in Computer Science,

Springer Verlag, Vol. 4664, 99–109 (2007).
12. Subramanian, K.G., Ali, R.M., Geethalakshmi, M., Nagar, A.K.: Pure 2D picture grammars

and languages. Discrete Appl. Math. 157, 3401-–3411 (2009).

Solving QUBO problems with cP systems

Lucie Ciencialová1[0000−0002−6026−5284], Michael J. Dinneen2[0000−0001−9977−525X],
Radu Nicolescu2[0000−0003−2498−1002], and Luděk Cienciala1[0000−0001−9473−5945]

1 Institute of Computer Science, Silesian University in Opava, Czech Republic
Research Institute of the IT4Innovations Centre of Excellence,

Silesian University in Opava, Czech Republic
lucie.ciencialova@fpf.slu.cz

2 School of Computer Science, University of Auckland,
Private Bag 92019, Auckland 1142, New Zealand

mjd@cs.auckland.ac.nz, r.nicolescu@auckland.ac.nz

Abstract. P systems with compound terms (cP systems) have been proposed by
Radu Nicolescu in 2018. These expressive cP systems have been used to solve well
known NP-complete problems efficiently such as the Hamiltonian path, traveling
salesman, 3-coloring, and problems in software verification. In this paper, we use
cP systems to give an efficient parallel solution to the integer-valued Quadratic
Unconstrained Boolean Optimization (QUBO) problem.

Keywords: Membrane computing, cP Systems, adiabatic quantum computing,
QUBO

1 Introduction

One of the first models for membrane computing was the P systems; this model was
first proposed by Gheorghe Păun in [15]. Many variants and extensions of P systems
have since been developed; see for example [16]. We note that, for many of the later
P system models, the focus has been more on computation (parallel and distributed)
rather than being primarily motivated by biological computation. A recent version
of P systems with compound terms (cP systems) [14] has been proposed by Radu
Nicolescu. These expressive cP systems have been used to solve well known NP-complete
problems efficiently such as the Hamiltonian path, traveling salesman [4], 3-coloring [3],
and problems in software verification [11]. This powerful framework can also solve
PSPACE-hard problems such as TQBF in linear time [7].

In this paper, we use cP systems to give an efficient parallel solution to the integer-
valued Quadratic Unconstrained Boolean Optimization (QUBO) problem. These QUBO
instances are generated from many combinatorial NP-hard optimization problems, which
is a fundamental framework for adiabatic quantum computations [13,17]. Here these
quantum computers, such as those produced by D-Wave Systems, are designed to solve
explicitly one type of hard optimization problem (e.g. the QUBO problem). To solve
other NP-hard problems, one does the traditional polynomial-time reduction to QUBO
on a classical computer, then attempt to solve the QUBO on these adiabatic quantum
machines, then post-process the quantum output on a classical machine to get a solution
to the original NP-hard problem.

68 L. Ciencialová et al.

The first development of simple polynomial-time reductions from well-known NP-
hard problems to QUBO (equivalently Ising) was given by Lucas in [12]. Later many
other problems such as dominating set [5], sub/graph isomorphism [2,8], bounded Steiner
tree [10], broadcast-time [1] were developed. The focus recently has been on reducing
the input sizes when mapped to QUBO so as to be able to run on the currently sized
quantum annealers, such as for MAX-3SAT [6] and k-densest common subgraph [9].

For the remaining part of this paper, we first describe cP systems in Section 2, then
address how to represent negative numbers with complex P system objects in Section 3,
formally define the QUBO problem in Section 4, and then show how to solve them
efficiently in Section 5. Finally, we end with some final comments in Section 6.

2 Introduction to cP systems

A cP system is a kind of P systems that is formed from separated cells called top-level
cells and their sub-cell systems. The rules are associated only with top-level cells, cells
inside top-level cells are used as structured storage. In this paper, we use a simplified
version of cP system with one top-level cell only.

Let us focus on sub-cells and the objects inside them. The elementary object is called
term. It can be contained directly inside the top-level cell or inside a sub-cell. These
sub-cells are called compound terms and they can contain both terms and compound
terms. The name of a compound term is a label of the sub-cell. Terms and compound
terms are written using lower-case letters, typically from the Latin alphabet, numbers
or special symbols, e.g. a, b, 1 for terms and f(), g(),+() for compound terms. As it
is common in membrane systems literature, we use upper indices for the multiplicity
appearance of an object, e.g. a3b2 and λ for the empty term – empty multiset. These
terms and compound terms are called ground terms. For better understanding relation
between the cell system and compound terms see Figure 1.

The rules associated with top-level cell can manipulate with terms and compound
terms too. They are designed as rewriting rules of the form

current-state lhs→ target-state rhs

where lhs and rhs are left-hand side and right-hand side of the rule. States of the top-level
cell are objects - terms that are involved in the system only for the purpose of determining
the state of the cell. If a rule application do not depend on a state of the cell the state can
be omitted from both sides of rule.

The speciality of the rules used in cP systems is use of variables. They are usually
labelled by uppercase letters, e.g. A,B,C. The variables can be replaced by any multiset
of objects - terms. Anonymous (discarded) variables are denoted by an underscore(_) in
cP systems.

The rules used in lhs and rhs can contain terms, compound terms with variables. For
example +(aXY 2) can be part of a rule. Before application of the rule with variables,
all symbols which appear in rules can be matched against ground terms, using a one-way
first-order syntactic unification (pattern matching). A term can only match another
copy of itself, but a variable can match any multiset of ground terms (including λ).
This may create combinatorial non-determinism, when a combination of two or more

Solving QUBO problems with cP systems 69

cell system corresponding terms
and compound terms

abb

top-cell

ab2

top-cell

abb

d

d(ab2)

top-cell

abb

d

b

e

d(ab2) e(b)

top-cell

abb

d

b

e
d(ab2 e(b))

Fig. 1: Relation between cells and terms.

70 L. Ciencialová et al.

variables are matched against the same multiset, in which case an arbitrary matching
is chosen. For example if lhs = +(aX)Y 2 and inside top-level cell there is compound
term +(a2c)b2 there is only one matching X = ac, Y = b. If lhs = +(XY) and
inside top-level cell there is compound term +(ab) there are four sets of matching
X = a, Y = b; X = b, Y = a; X = λ, Y = ab; X = ab, Y = λ.

The rhs can contain promoters or (and) inhibitors. Promoters are objects that must
be present within the top-level cell for the rule to be applicable but are not removed by
the rule. Inhibitors are objects that must not be present for the rule to be applicable. If
promoters are present, they are denoted following a | per promoter, and inhibitors by ¬.
To define additional useful matchings expressively, promoters and inhibitors may also
use virtual “equality” terms, written in infix format, with the = operator. For example,
including the term (ab = X) indicates that in valid matching X equals to ab.

So, the rule with variables can be unified in more than one way. Such rule can be
seen as template for applicable rules that are made by matching.

There are two modes of application of rules: min and max. If rule is applied in min
mode, system non-deterministically selects and applies one of applicable rules arise from
matching of this rule. If rule applies in max mode all these applicable rules are executed.
The mode of application is associated with every rule and it is stated as sub-index of→
(→min and→max).

Formally, a single-cell cP system is a construct

Π = (T,A,O,R, S, s), where

T is the set of top-level cells at the start of the evolution of the system; A is the alphabet
of the system; O is the set of multisets of initial objects in the top-level cells; R is the set
of rule-sets for each top-level cell; S is the set of possible states of the top-level cells;
and s ∈ S is the starting state of every top-level cell in the system.

3 Representing and operating on integers

When solving discrete numerical problems, we encounter the problem of representing
negative integers in terms of cP systems.

In cP systems, as in other membrane systems, to represent natural numbers, a multiset
of identical objects whose number is just that number is used. For example, the number 4
can be represented as four occurrences of the object 1, and the absence of such an object
can represent the number 0.

Consider a representation where each integer consists of two components, a positive
and a negative, just as a complex number consists of a real and an imaginary component.
For every integer a there is

i(x, y), where x, y ∈ N0 ⇐⇒ a = x− y

For example:

Solving QUBO problems with cP systems 71

i(1, 4)⇐⇒ −3 = 1− 4

Note that there are multiple such representations for each integer. We consider a
number representation in canonical form if at least one of its components is equal to zero.

i(5, 8)⇐⇒ −3 = 5− 8

i(8, 11)⇐⇒ −3 = 8− 11

i(0, 3)⇐⇒ −3 = 0− 3

Every representation i(x, y) can be converted into canonical form:

i(x, y) ∼

{
i(x′, 0) for x ≥ y where x′ = x− y

i(0, y′) for x < y where y′ = y − x

We can also define operations that are similar to those with integers such as addition,
subtraction and multiplication. Division is not given because of the the set of integers is
not closed under division.

i(x, y) + i(x′, y′) = i(x+ x′, y + y′)

i(x, y)+ i(x′, y′)⇐⇒ (x−y)+(x′−y′) = x+x′−y−y′ = (x+x′)− (y+y′)⇐⇒
i(x+ x′, y + y′)

i(x, y)− i(x′, y′) = i(x+ y′, y + x′)

i(x, y)− i(x′, y′)⇐⇒ (x−y)− (x′−y′) = x−x′−y+y′ = (x+y′)− (y+x′)⇐⇒
i(x+ y′, y + x′)

i(x, y) · i(x′, y′) = i(x · x′ + x′ · y′, y · x′ + x · y′)

i(x, y) · i(x′, y′) ⇐⇒ (x − y) · (x′ − y′) = x · x′ − x · y′ − y · x′ + y · y′ =
(x · x′ + y · y′)− (x · y′ + y · x′)⇐⇒ i(x · x′ + x′ · y′, y · x′ + x · y′)

For simulation of QUBO we do not need to use multiplication, only addition and
subtraction is needed.

3.1 Counting with integers in cP systems

In cP systems, the number i(x, y) can be seen as a cell containing two sub-cells labeled
by + and −, i (+(x) −(y)). For example

i(3, 2) i (+(111) −(11)) = i (+(3) −(2))

i(1, 4) i (+(1) −(1111)) = i (+(1) −(4))

i(2, 0) i (+(11) −()) = i (+(2) −())

i(0, 0) i (+() −())

72 L. Ciencialová et al.

In cP systems, one rule is sufficient to implement the addition and subtraction of two
integers:

−→min k (+(AC) −(BD)) | i (+(A) −(B)) j (+(C) −(D))

−→min k (+(AD) −(BC)) | i (+(A) −(B)) j (+(C) −(D))

4 QUBO

Motivated recently by the emerging popularity of adiabatic quantum computing, QUBO
(Quadratic Unconstrained Binary Optimisation) is an NP-hard mathematical optimization
problem. For this paper, we are interested in the integer version of the problem of
minimizing a quadratic objective function

x∗ = min
~x
~xTQ~x

where:

– n ∈ N0 - the number of variables in ~x
– i, j ∈ N0

– ~x is a n-vector of binary (Boolean) variables xi ∈ {0; 1} , 0 ≤ i ≤ n− 1
– Q is an upper-triangular n × n matrix where qi,j ∈ Z, 0 ≤ i ≤ j ≤ n − 1 are
possibly non-zero coefficients

Formally, QUBO problems are of the form:

x∗ = min
~x

∑
i≤j

xiqi,jxj , where xi, xj ∈ {0, 1}

This restriction on the matrix Q to integer values does not limit the power of the
QUBO problem, as most reductions from other NP-hard problems to it maps to this form.
(See, for example, [12,5,1].)

5 cP system QUBO solver

We now develop a cP system that finds minimal value of a QUBO in three phases of
computation.

1. In the first phase, all possible values assignment is generated.
2. The second phase is devoted to generating of all polynomials.
3. In the third phase, related coefficients are added together to evaluate potential

solutions for the assignments produced from phases 1 and 2.

We write number z ∈ N instead of 1z inside elemental cells.
Input:

Solving QUBO problems with cP systems 73

– For every variable xi storing value yi ∈ {0, 1} there is complex object

a (in(i)val(y′i)) where y′i ∈ {λ, 1}.

– For every coefficient qi,j there is complex object

q (in1(i)in2(j)val(+(x) −(y))) where qi,j = x− y.

– Two counters (counter-like objects): C1(λ), C2(n).
– Empty list (complex object) of values of variables: l(C1(λ)) with counter C1(λ)
inside.

5.1 1st phase

The first phase aims to generate all possible combinations of values that variables
x0, . . . xn−1 can be set to.

S1 C2(1X) −→min S2 v(λ)v(1)C2(X) (1)

By the execution of the rule (1), two complex objects - v(λ) and v(1) are generated
and the number of 1s inside C2() is decreased by one.

S2 −→max S1 l (a (in(X)val(Y))C1(X1)Z) | l (C1(X)Z)

| v(Y)
(2)

For every combination of X,Z and Y there can be one unified rule. Because X is
the same for all objects in cP system at current step of computation, Z is unique for every
object l(), and there are two possible evaluations for Y there is 1× |l()| × 2 rules that
can be executed in parallel.

S2 l(_) −→max S1 (3)

S2 v(_) −→max S1 (4)

The rules (3) and (4) can erase all objects l() and v() inside the cell.

S2 : l(C1(λ))C2(n− 1) v(λ)v(1) example configuration

74 L. Ciencialová et al.

(2)1 X = λ, Y = λ, Z = λ

S2 −→max S1 l (a (in(λ)val(λ))C1(1)) | l (C1(λ))

| v(λ)

(2)2 X = λ, Y = 1, Z = λ

S2 −→max S1 l (a (in(λ)val(1))C1(1)) | l (C1(λ))

| v(1)

(3)

S2 l (C1(λ)) −→max S1

(4)1

S2 v(λ) −→max S1

(4)2

S2 v(1) −→max S1

S1 : l (a (in(λ)val(λ))C1(1)) l (a (in(λ)val(1))C1(1))C2(n− 1)

When the number stored in the counter C2 is reduced to zero, rule (1) is no
longer applicable. The top-level cell contains 2n complex objects l() having different
combinations of variable values. To move to the next stage, we need to restore the value
of counter C2 and insert a componentm() into the objects l() for use in the next stage.
The object l′() stores the values of variables.

S1 C2() −→min S
′
2 C2(X1) | l (ZC1(X)) (5)

S′2 l (ZC1(X)) −→max S3 l (ZC1()m()l′(Z)) (6)

5.2 2nd phase

The idea of the second phase is to generate objects p(), which will contain representatives
of quadratic elements that will be multiplied by the coefficients of one (say the i-th) row
of the matrix Q. However, if the value of the variable xi is zero, the generation of the
row is omitted since its value will be zero.

SinceQ is upper-triangular, the i-th row has at mostn−i non-zero coefficients that will
be multiplied by quadratic elements consisting of xi and xj , where n− 1 ≥ j ≥ i ≥ 0.

For example: Let ~x = (1, 1, 1, 1). After the second phase, the complex objectm()
will contain the following objects:

Solving QUBO problems with cP systems 75

p(w(λ) a(in(λ)val(1)) a(in(1)val(1)) a(in(11)val(1)) a(in(111)val(1)))

p(w(1) a(in(1)val(1)) a(in(11)val(1)) a(in(111)val(1)))

p(w(11) a(in(11)val(1)) a(in(111)val(1)))

p(w(111) a(in(111)val(1)))

When there is some value zero in the vector ~x the corresponding p() is present in
m() in “an empty" form. For example, if ~x = (1, 0, 1, 0):

p(w(λ) a(in(λ)val(1)) a(in(1)val(0)) a(in(11)val(1)) a(in(111)val(0)))

p(w(1))

p(w(11) a(in(11)val(1)) a(in(111)val(0)))

p(w(111)

S3 l (m (Z ′) a (in(X)val(1))Zl′(Y)C1(X)) −→max S
′
3

l (m (p (w(X)a (in(X)val(1))Z)Z ′)Zl′(Y)C1(X)) (7)

S3 l (m (p (w(X))Z ′) a (in(X)val(λ))Zl′(Y)C1(X)) −→max S
′
3

l (m (Z ′)Zl′(Y)C1(X)) (8)

If the top-level cell is in state S3, exactly one rule is applied to each object l(), either
rule (7) or rule (8). In the state S′3, rule (9) is executed in max mode, which causes the
counter C1 to increase inside all objects l(). After that, rule (10) is applied to decrease
the value of counter C2 by one.

S′3 l (C1(X)Z) −→max S
′′
3 l (C1(1X)Z) (9)

S′′3 C2(1X) −→min S3 C2(X) (10)

If the counter C2 is empty, all objects p() have been generated, and it is time to
proceed to the next stage. First, using rule (11), we delete the counter, and the top-left
cell goes to state S4. Then we delete the unnecessary objects from all objects l() as well
using rule (12).

S3 C2() −→min S4 (11)

S4 l (m(X)l′(Z)C1(Y)) −→max S4 l (X r(+(λ) −(λ)) l′(Z)C1(Y)) (12)

76 L. Ciencialová et al.

5.3 3rd phase

In the third stage, for each combination of non-zero values of xixj , we will add the value
of the coefficient qij to the result in the object l().

S4 l (r (+(U ′) −(V ′)) p (w(X)a (in(Y)val(1))Z)Z ′C1(X))

−→max S4 l (r (+(UU ′) −(V V ′)) p (w(X)Z)Z ′C1(X))

| q (in1(X)in2(Y)val(+(U) −(V))) (13)

S4 l (p (w(X)a (in(Y)val())Z)Z ′C1(X))

−→max S4 l (p (w(X)Z)Z ′C1(X))

| q (in1(X)in2(Y)val(Z ′′)) (14)

When an object p() with a leading variable xi no longer contains any object a(), i.e.
a complex object l() contains an object p(w(i)) and an inner counter C1(i), the internal
counter needs to be decreased. If counter C1() is already zero, the top-level cell changes
its state to S5.

S4 l(p(w(1X))ZC1(1X)) −→max S4 l(ZC1(X)) (15)

S4 l(p(w())Zl′(Y)C1()) −→max S5 l(Zl
′(Y)) ¬l(C1(1X)_) (16)

Normalisation:

S5 l(r(+(XY) −(Y))_) −→max S6 l(r(+(X) −(λ))_) (17)

S5 l(r(+(X) −(XY))_) −→max S6 l(r(+(λ) −(Y))_) (18)

If there is at least one negative integer in r()s we will search for maximum of negative
part of r(). If there are only positive integers (including zero) we will search for the
minimum of the positive part of r().

S6 l(r(+(_) −(1Y))_) −→min S7 l(r(+(_) −(1Y))_) (19)

S6 l(r(+(X) −(λ))_) −→min S8 l(r(+(X) −(λ))_)

¬l(r(+(_) −(1Y))_) (20)

When the top-level cell is in the state S7, there is at least one negative result stored in
r(). Then we need to find maximum of negative part of r().

Solving QUBO problems with cP systems 77

S7 −→min SF res(val(+(λ) −(X))Z) | l(r(+(λ) −(X))Z)

¬l(r(+(λ) −(X1Y))_) (21)

To find a minimum of positive and zero values we need to add one to the content of
+() so the value of each r() is at least one. Then we find a minimum of positive parts of
r()s.

S8 l(r(+(X) −(λ))Z) −→max S9 l(r(+(x1) −(λ))Z) (22)

S9 −→min SF res(val(+(X) −(λ))Z)

| l(r(+(1X) −(λ))Z)

¬(X = YW) l(r(+(Y) −(λ))_) (23)

The result of computation is complex object that contains variable values in sub-cell
res().

6 Conclusions

In this paper we showed how integers can be represented and used in cP systems. The
second part of the paper was devoted to cP systems that can give an efficient parallel
solution to the integer-valued Quadratic Unconstrained Boolean Optimization (QUBO)
problem.

Acknowledgments

We thank James Cooper and Yezhou Liu for their helpful discussions.
Research is partially supported by the Silesian University in Opava under the Student

Funding Plan, project SGS/11/2023

References

1. Calude, C.S., Dinneen, M.J.: Solving the broadcast time problem using a D-Wave quantum
computer. In: Advances in Unconventional Computing, pp. 439–453. Springer (2017)

2. Calude, C.S., Dinneen, M.J., Hua, R.: Quantum solutions for densest k-subgraph problems.
Journal of Membrane Computing 2(1), 26–41 (2020). https://doi.org/10.1007/s41965-019-
00030-1

3. Cooper, J., Nicolescu, R.: Alternative representations of P systems solutions to the graph
colouring problem. Journal of Membrane Computing 1(2), 112–126 (2019)

4. Cooper, J., Nicolescu, R.: The Hamiltonian cycle and travelling salesman problems in cP
systems. Fundamenta Informaticae 164(2-3), 157–180 (2019)

https://doi.org/10.1007/s41965-019-00030-1
https://doi.org/10.1007/s41965-019-00030-1

78 L. Ciencialová et al.

5. Dinneen,M.J., Hua, R.: Formulating graph covering problems for adiabatic quantum computers.
In: Proceedings of the Australasian Computer Science Week Multiconference. pp. 18:1–18:10.
ACSW ’17, ACM, New York, NY, USA (2017). https://doi.org/10.1145/3014812.3014830

6. Fowler, A.: Improved QUBO Formulations for D-Wave Quantum Computing. Master’s thesis,
University of Auckland (2017)

7. Henderson, A., Nicolescu, R., Dinneen, M.J.: Solving a PSPACE-complete prob-
lem with cP systems. Journal of Membrane Computing 2(4), 311–322 (Dec 2020).
https://doi.org/10.1007/s41965-020-00064-w

8. Hua, R., Dinneen, M.J.: Improved QUBO formulation of the graph isomorphism problem. SN
Computer Science 1(19), 1–18 (2020). https://doi.org/10.1007/s42979-019-0020-1

9. Huang, N.: A QUBO formulation for the k-densest common subgraph isomorphism problem
via quantum annealing. In: 2020 IEEE Asia-Pacific Conference on Computer Science and Data
Engineering (CSDE). pp. 1–7 (2020). https://doi.org/10.1109/CSDE50874.2020.9411586

10. Liu, K., Dinneen, M.J.: Solving the bounded-depth Steiner tree problem using an adiabatic
quantum computer. In: Proceedings of IEEE CSDE 2019, Melbourne, Australia (Dec 2019),
https://researchspace.auckland.ac.nz/handle/2292/49490, http://ilab-australia.org/CSDE2019/

11. Liu, Y., Nicolescu, R., Sun, J.: Formal verification of cP systems using PAT3 and ProB. Journal
of Membrane Computing 2(2), 80–94 (2020)

12. Lucas, A.: Ising formulations of many NP problems. Frontiers in Physics 2, 5 (2014)
13. McGeoch, C.C.: Adiabatic quantum computation and quantum annealing: Theory and practice.

Synthesis Lectures on Quantum Computing 5(2), 1–93 (2014)
14. Nicolescu, R., Henderson, A.: An introduction to cP Systems. In: Graciani, C., Riscos-Núñez,

A., Păun, G., Rozenberg, G., Salomaa, A. (eds.) EnjoyingNatural Computing: Essays Dedicated
to Mario de Jesús Pérez-Jiménez on the Occasion of His 70th Birthday. pp. 204–227. LNCS
11270, Springer (2018)

15. Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1),
108–143 (2000)

16. Sosík, P.: P systems attacking hard problems beyond NP: a survey. Journal of Membrane
Computing 1(3), 198–208 (2019). https://doi.org/10.1007/s41965-019-00017-y

17. Wikipedia contributors: D-Wave Systems — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/w/index.php?title=D-Wave_Systems (2022), [Online; accessed 15-August-
2022]

https://doi.org/10.1145/3014812.3014830
https://doi.org/10.1007/s41965-020-00064-w
https://doi.org/10.1007/s42979-019-0020-1
https://doi.org/10.1109/CSDE50874.2020.9411586
https://researchspace.auckland.ac.nz/handle/2292/49490
https://doi.org/10.1007/s41965-019-00017-y
https://en.wikipedia.org/w/index.php?title=D-Wave_Systems
https://en.wikipedia.org/w/index.php?title=D-Wave_Systems

Implementing Perceptrons by Means of Water Based
Computing

Nicoló Civiero1, Alec Henderson2, Thomas Hinze3, Radu Nicolescu4, and Claudio
Zandron1

1 Dipartimento di Informatica, Sistemistica e Comunicazione (DISCo)
Università degli Studi di Milano-Bicocca

Viale Sarca 336, 20126 Milan, Italy {claudio.zandron}@unimib.it
2 Australian Institute of Tropical Health and Medicine, James Cook University, Townsville,

Australia alec.henderson@jcu.edu.au
3 Friedrich Schiller University Jena, Department of Bioinformatics

Ernst-Abbe-Platz 2, D-07743 Jena, Germany thomas.hinze@uni-jena.de
4 University of Auckland, School of Computer Science, Auckland, New Zealand

r.nicolescu@auckland.ac.nz

Abstract. Water based computing emerged as a branch of membrane computing
in which water tanks act as permeable membranes connected via pipes. Valves
residing at the pipes control the flow of water in terms of processing rules. Resulting
water tank systems provide a promising platform for exploration and for case
studies of information processing by flow of liquid media like water. We first
discuss the possibility of realizing a single layer neural network using tanks and
pipes systems. Moreover, we discuss the possibility to create a multi-layer neural
network, which could be used to solve more complex problems. Two different
solutions are considered: in a first solution, the weight values of the connections
between the network nodes are represented by tanks. This means that the network
diagram includes multiplication structures between the weight tanks and the input
tanks. The second solution aims at simplifying the network proposed in the previous
solution, by considering the possibility to modify the weight values associated
to neuron by varying the diameter of the connecting pipes between the tanks.
The multiplication structures are replaced with a timer that regulates the opening
of the outlet valves of all the tanks. These two solutions can be compared to
evaluate their efficiency, and considerations will be made regarding the simplicity
of implementation.

Keywords: Membrane Systems, Water Based Computing, Neural Networks

1 Introduction

P systems, initially introduced by Gh. Păun in [13], are a computational model inspired
by biological membranes that operate in a parallel and distributed manner. These systems
are characterized by their decentralized nature and their evolution is based on the content
of interconnected membranes. Numerous variants of P systems have been proposed and
extensively studied, including P systems with active membranes [14,16], spiking neural
P systems [6,8], and tissue P systems [7,11].

80 N. Civiero, A. Henderson, T. Hinze, R. Nicolescu, C. Zandron

Recent research efforts have focused on simulating P systems on mainstream hardware
[1,17], formal verification techniques [9,10], or employing more visual approaches like
[2].

Another recently introduced idea concerns membrane water computing, introduced
in [3] and driven by the goal of obtaining a parallel computing system without any central
control. In such a system, the flow of water is solely regulated by local measurements of
tank filling levels in a finite number of water tanks, each capable of holding an initial
volume of water and storing or collecting water up to a maximum capacity. The water tank
system can be viewed as a membrane system: the water tanks can be seen as membranes
permeable to inflow and/or outflow of water molecules, whose presence is dynamically
regulated by local measurements (interaction rules).

The volume of water contained in a tank serves as both data carrier and a medium for
data processing, achieved by manipulating the volume over time. Tanks are interconnected
using pipes, which allow the directed transfer of water from one tank to another when
opened. The pipes can be equipped with one or more valves, which can be configured in
different ways. A valve has two states: "fully open" or "fully closed", and it is determined
by monitoring the filling level in a specific tank. When the level of water exceeds a
predetermined threshold or indicates a nearly empty tank, the valve fully opens or remains
closed at the hosting pipe during the ongoing time step, respectively. A pipe will transport
water only if all its valves are fully opened and the supplying tank has water available.
The entrance of a pipe can be positioned at any desired filling level in its supply tank,
requiring a minimum amount of water in the tank before the pipe can be filled.

Water tank systems provide a promising platform for exploration and for case studies
of information processing based on the controlled flow of liquid media like water. This
concept gives a strong motivation and substantiates the significance of further work in
detail for application scenarios.

A water tank system can operate in either analog or binary mode. In analog mode,
the volume of water within a tank represents a non-zero natural number. To facilitate this,
we introduce water tank systems for arithmetic operations such as addition, non-negative
subtraction, division, and multiplication. These systems can be assembled to perform
sequenced or nested computations. Furthermore, a ring oscillator, consisting of a cyclic
structure with at least three water tanks, emulates a clock signal. In binary mode, an
empty or nearly empty water tank corresponds to the logical value "0," while a full or
nearly full tank corresponds to "1," with latencies during the filling or emptying process.

The obtained systems operate autonomously in a decentralized manner, simply relying
on local measurements of filling levels. We stress the fact that, since a water tank can
be viewed as a membrane that allows the inflow and/or outflow of water molecules,
dynamically regulated by local measurements, such an approach is closely related to
tissue membrane systems.

In the original paper [3], authors define basic logic gates such as OR, AND, and a bit
duplicator for water-based logic operations. These logic gates can be connected to form
Boolean circuits with the ability of inherent self-synchronization, eliminating the need
for external control.

In this paper, we first discuss the possibility of realizing a single layer neural network
using tanks and pipes systems, through which water flows. Moreover, we discuss the

Implementing Perceptrons by Means of Water Based Computing 81

possibility to create a multi-layer neural network, which could be used to solve more
complex problems. We stress the fact that one advantage of such an implementation lies
in the possibility to adopt it for explaining the functioning of Neural Network at different
levels, to students or even more general audience, clearly illustrating the basic principles
behind a Neural Network. In fact, the flow and the containment of water are easily visible
by human senses, and the process of learning can be directly observed in details.

Two different solutions are considered: in a first solution, the weight values of the
connections between the network nodes are obtained by using specific tanks. The second
solution aims at simplifying the network proposed in the previous solution, by considering
the possibility to modify the weight values associated to each neuron by varying the
diameter of the connecting pipes between the tanks.

The paper is organized as follows. In Section 2 we recall some definitions related to
water based computing, and we recall some basic multiplication schemes realized by
means of water tanks, which will be used in the rest of the paper. In Section 3 two different
implementations of the basic perceptron are presented. In Section 4 an implementation
of the multilayer-perceptron and the description of three different activation functions are
discussed. In Section 5 we draw some conclusions and give some directions for future
investigations.

2 Basic Definitions

In this section, we shortly recall some definitions that will be useful while reading the
rest of the paper. For a complete introduction to P systems, we refer the reader to The
Oxford Handbook of Membrane Computing [15].

A water tank system represents a special type of membrane systems in which a
single membrane is described by a water tank able to store an amount of water up
to its predefined finite capacity. The communication between membranes has been
managed by pipes that enable a controllable flow of water from one tank to another one.
Communication rules appear by definition of valves. Here, each pipe can be equipped
with an arbitrary number of valves. By default, a valve fully closes its hosting pipe.
A valve either fully opens or remains closed its hosting pipe based on measurements
iterated in discrete time steps. For instance, a valve opens if and only if the filling level in
a specific water tank exceeds a certain threshold, otherwise it closes. If the condition
for an open valve is not fulfilled any more, it closes at the end of the ongoing time step.
Water gets transported via a pipe if and only if all residing valves are opened and the
supply tank contains water.

The first formal definition of a water tank system was given in [3]. Later, a more
simplified version was published in [4,5]. In order to cope with the needs for emulation of
perceptrons, the modelling framework for water tank systems undergoes a further stage
of extension by additional types of valves and by additional parameters for specification
of pipes.

Formally, a water tank system is a construct

Π = (W,A, τ, E, r, P, v0, s0, ∆t) (1)

with its components:

82 N. Civiero, A. Henderson, T. Hinze, R. Nicolescu, C. Zandron

– W is a finite and non-empty set of tank identifiers (water tanks).
– A is a finite and non-empty set of valve identifiers (actuators).
– τ : W −→ R+∪{∞} is a function assigning a capacity to each tank (tank capacity).
R+ stands for the set of positive rational numbers. The capacity defines the maximum
volume of water a tank can store. Excessive water is removed from a tank by overflow
drain. Please note that tanks with an infinite capacity are allowed to act as a reservoir.

– E ⊂W × {<,=,≤, >,≥, 6=} × R specifies a finite set of decision rules resulting
from measurements (evaluation). A measurement reveals the current volume of
water in a tank fromW . We assume that each measurement returns a non-negative
rational number in R including zero. An element e ∈ E stands for a comparison by
means of a relational operator. This comparison is carried out what finally implies
an underlying decision by answering “true” or “false”, respectively.

– r : A −→ E defines a mapping that assigns a decision rule to each valve. Hence,
each valve comes with a dedicated behaviour (reaction).

– P ⊂W ×W × P(A) symbolises a finite set of pipes in which each pipe starts at a
tank fromW , ends at a tank fromW and hosts none, one, or several valves. These
valves have been given by an element from the power set P(A).

– v0 : W −→ R∪ {∞} specifies the initial volume of water for each water tank inW .
For all water tanks w ∈W , it holds v0(w) ≤ τ(w).

– s0 : P −→ R+. This function assigns an initial diameter (size) to each pipe.
Diameters are expressed by rational numbers greater than zero.

– ∆t ∈ R+ defines the duration of a discrete time step given by a constant non-negative
rational number.

A water tank system evolves in discrete constant time steps beginning with its initial
configuration. The execution of a time step consists of a sequence of actions. Valves
are closed by default. First, all measurements are done simultaneously in all involved
tanks. Then, all decisions based on these measurements have been made. Next, the valves
update their state according to the corresponding decision rules. In case a decision ends
up with “true”, the valve fully opens. Otherwise, the valve remains closed. Now, water
can flow or not through the pipes. Each pipe whose valves are all fully opened transports
a portion of water during the ongoing time step when supplied. In addition, the portion
of water depends on the size of the pipe. As a consequence, the water volume of either
related tanks needs to be updated (increased or decreased). Finally, the size of each pipe
can be adapted (made smaller or larger). After all the aforementioned actions have been
carried out, the processing within the current time step is finalised, all valves become
closed again, and the subsequent time step might begin. The water tank system stops
if the water volumes in all water tanks keep constant over two successive time steps
indicating a final system’s configuration.

We recall now the integer multiplication scheme, a copy of the one presented in [3].
In this scheme, the operation works as follows: a unit is subtracted from tank x at each
iteration of the loop until the tank x becomes empty, while at each iteration, the value of
y is added to the result tank. For implementation details and a detailed description of
how it works, we refer the reader to [3].

For the sake of completeness, the schemes related to multiplication with rational
values are also provided. However, it is important to keep in mind that multiplication

Implementing Perceptrons by Means of Water Based Computing 83

Fig. 1: Integer multiplication

involving rational numbers introduces approximations and lacks precision. For optimal
outcomes, we have categorized the multiplication process into three cases, taking into
account the input values (x, y).

1. x, y < 0.81
2. x, y < 1 and x or y > 0.8
3. x or y > 1

We depict below the schemes for case 1 (see fig. 2) and case 2 (see fig. 3); the
subtraction schema can be found in [3].

The subtraction works as follows: the valves placed on the pipes connecting the tanks
(x and y) to the sink are opened simultaneously. The contents of both tanks are drained at
the same time until one of the tanks becomes empty. The result is then taken from tank x.
From this description, it is evident that if x is less than y, then the result of the operation
will be zero.

For the third case, the schema is the same as the multiplication with integers presented
earlier. However, it is important to note that, for this operation, it is advisable to position
the larger number in the tank labeled as x, to ensure a more accurate result. Conversely,
if the numbers are swapped, the outcome may not be as precise; as an example, the
operation 0.3 * 5.5 would give a result of 5.5.

3 Implementing Perceptrons through Water Based Computing

Artificial Neural Networks (or simply Neural Networks) are mathematical models
composed of nodes (neurons) that are inspired by the functioning of the human brain,
where interconnected neurons exchange information. A neural network is an "adaptive"
system capable of modifying its structure (nodes, interconnections, and weights) based

84 N. Civiero, A. Henderson, T. Hinze, R. Nicolescu, C. Zandron

Fig. 2: rational values multiplication case 1

Fig. 3: rational values multiplication case 2

on both external data and internal information that connect and pass through the neural
network during the learning phase.

The perceptron, introduced by McCulloch-Pitts in [12], is a machine learning
algorithm used for supervised learning of binary classifiers. These classifiers are functions
that determine whether an input, represented by a numerical vector, belongs to a particular
class or not.

In this section, we propose an implementation of a perceptron and a simple multilayer
perceptron by means of Water Based Computing. In particular, we will consider water
based systems operating in analog mode: in this mode, the volume of water within a
tank corresponds to a non-zero natural number. A XOR gate is used to track negative or

Implementing Perceptrons by Means of Water Based Computing 85

positive results: we assume that positive values encode to logical value ‘0’ and negative
value to ‘1’. The XOR gate can be obtained as a modified version of the OR gate presented
in [3], with an added valve in the result tank.

The water volume from the two input tanks is combined in a result tank. The input
tanks have a maximum capacity corresponding to the logic level 1, while the result tank
has two times this capacity. When both inputs tanks are 1, the result of the XOR gate
must be 0. This issue can be resolved by using a simple valve added to the original OR
gate, that opens when the content of the result tank reaches its full level. All the water is
then drained, resulting in an empty result tank, corresponding to a 0. This logic gate will
be used to control the sign of the operations of multiplication used to design perceptrons.

As a starting point, a simple version of a network with a single node of binary
activation (0,1) was considered. This node is called a "simple perceptron" because it
uses a simple step function as its activation function. The activation function of a node is
a mathematical function that defines the output of the node after receiving the sum of
weighted inputs.

We discuss two possible implementations of the network, referred to as solution 1
and solution 2. We stress the fact that the subtractions used in the schemes of the two
presented solutions allow for negative results. The operation is similar to the non-negative
subtraction schema presented in [3]. Water is simultaneously discharged from both tanks
until one becomes empty. At this point, the remaining water in the other tank flows
towards the result tank. Additionally, on the right side of the diagram, there is a control
tank which indicates if the subtraction result is negative.

3.1 Solution 1

In the first proposed solution, the chosen approach is to multiply the input by the
corresponding weight value. Formally, the system to implement the perceptron is defined
as follows:

W = {(w1), (x1), (w2), (x2), (b), (S+), (S−), (Res), (Sw1), (Sx1), (Sw2), (Sx2),

(Sb), (Smultiplication1), (Smultiplication2), (reservoir)}

A = {(w1new), (w2new), (bnew), (sw1new), (sw2new), (sbnew), (e ′), (Start),

(SMult1e), (SMult1ne), (SMult2e), (SMult2ne), (Sbe), (Sbne), (b)}

τ = {(w1, 2), (x1, 2), (w2, 2), (x2, 2), (b, 2), (S+, 10), (S−, 10), (Res, 2),

(Sw1, 1), (Sx1, 1), (Sw2, 1), (Sx2, 1), (Sb, 1),

(Smultiplication1, 1), (Smultiplication2, 1), (reservoir,∞)}

86 N. Civiero, A. Henderson, T. Hinze, R. Nicolescu, C. Zandron

E = {(w1new > 0), (w2new > 0), (bnew > 0), (sw1new > 0), (sw2new > 0),

(sbnew > 0), (e ′ > 0), (Smultiplication1 > 0), (Smultiplication2 > 0),

(Sb > 0), (b > 0)}

r=

w1new =

{
1 if V w1new > 0

0 if otherwise

w2new =

{
1 if V w2new > 0

0 if otherwise

bnew =

{
1 if V bnew > 0

0 if otherwise

sw1new =

{
1 if V sw1new > 0

0 if otherwise

sw2new =

{
1 if V sw2new > 0

0 if otherwise

sbnew =

{
1 if V sbnew > 0

0 if otherwise

e ′ =

{
1 if V e ′ > 0

0 if otherwise

start =

{
1 if time > 0

0 if otherwise

SMult1e =

{
1 if V Smultiplication1 = 0

0 if otherwise

SMult1ne =

{
1 if V Smultiplication1 > 0

0 if otherwise

Smult2e =

{
1 if V Smultiplication2 = 0

0 if otherwise

Smult2ne =

{
1 if V Smultiplication2 > 0

0 if otherwise

Implementing Perceptrons by Means of Water Based Computing 87

Sbe =

{
1 if V Sb = 0

0 if otherwise

Sbne =

{
1 if V Sb > 0

0 if otherwise

b =

{
1 if V b = 0

0 if otherwise

Meaning that 1 marks the valve to be open and 0 closed, respectively.

P = {(reservoir, w1, {w1new}), (w1,Multiplication1, {start}),
(x1,Multiplication1, {start}), (reservoir, w2, {w2new}),
(w2,Multiplication2, {start}), (x2,Multiplication2, {start}),
(reservoir, b, {bnew}), (Multiplication1, S+, {SMult1e}),
(Multiplication1, S−, {SMult1ne}), (Multiplication2, S+, {SMult2e}),
(Multiplication2, S−, {SMult2ne}), (b, S+, {Sbe}),
(b, S−, {Sbne}), (S+, [(S+)− (S−)], {}), (S−, [(S+)− (S−)], {}),
([(S+)− (S−)], Res, {}), (Res, sink, {}), (reservoir, Sw1, {sw1new, e ′}),
(reservoir, Sw2, {sw2new, e ′}), (reservoir, Sb, {sbnew, e ′}),
(Sw1, xor, {start}), (Sx1, xor, {start}), (Sw2, xor, {start}),
(Sx2, xor, {start}), (Sb, sink, {start, b}), (xor, Smultiplication1, {}),
(xor, Smultiplication2, {})}

V 0 = {(w1; 0), (x1; 0), (w2; 0), (x2; 0), (b; 0), (S+; 0), (S−; 0), (Res; 0), (Sw1; 0),

(Sx1; 0), (Sw2; 0), (Sx2; 0), (Sb; 0), (Smultiplication1; 0),

(Smultiplication2; 0)}

88 N. Civiero, A. Henderson, T. Hinze, R. Nicolescu, C. Zandron

S0 = {(reservoir, w1, {w1new}, 0.1), (w1,Multiplication1, {start}, 0.1),

(x1,Multiplication1, {start}, 0.1), (reservoir, w2, {w2new}, 0.1),

(w2,Multiplication2, {start}, 0.1), (x2,Multiplication2, {start}, 0.1),

(reservoir, b, {bnew}, 0.1), (Multiplication1, S+, {SMult1e}, 0.1),

(Multiplication1, S−, {SMult1ne}, 0.1),

(Multiplication2, S+, {SMult2e}, 0.1),

(Multiplication2, S−, {SMult2ne}, 0.1), (b, S+, {Sbe}, 0.1),

(b, S−, {Sbne}, 0.1), (S+, [(S+)− (S−)], {}, 0.1),

(S−, [(S+)− (S−)], {}, 0.1), ([(S+)− (S−)], Res, {}, 0.1),

(Res, sink, {}, 0.1)(reservoir, Sw1, {sw1new, e ′}, 0.1),

(reservoir, Sw2, {sw2new, e ′}, 0.1), (reservoir, Sb, {sbnew, e ′}, 0.1),

(Sw1, xor, {start}, 0.1), (Sx1, xor, {start}, 0.1),

(Sw2, xor, {start}, 0.1), (Sx2, xor, {start}, 0.1),

(Sb, sink, {start, b}, 0.1), (xor, Smultiplication1, {}, 0.1),

(xor, Smultiplication2, {}, 0.1)}

∆t = 1second

We have decided to set a maximum size of 2 for the input and weight tanks to keep
the network dimensions limited. For the control tanks, the maximum value is set to one
because the possible values of a control tank are either 1 or 0.

To represent the weight of the connection between the input and the node, a tank is
used, and the content of the tank corresponds to the weight value (see fig. 4).

On the left side of the schema, the actual network is depicted, with tanks for the input
(x) and tanks for the weights (W). In this hypothesis, these values are multiplied together
(multiplication1, multiplication2) using the multiplication schema mentioned earlier.
The result of the multiplication then flows into the tanks S (sum), while observing the
value contained in the tanks Smult (multiplication sign). The tank (S+) contains positive
values, while the tank (S-) contains negative values. The Bias value is added to one of
these two tanks, depending on the value of the tank Sb (bias sign). The subtraction is
then performed between the values contained in the tank (S+) and (S-) to obtain the
result of the network, which is then passed through the activation function to obtain the
network’s output.

On the right side, there are control tanks used to calculate the signs of multiplication
and bias. In particular, the XOR operation is used for the multiplication sign, and the
values contained in the tanks Smult will be 0 for a positive sign and 1 for a negative sign.
The FeedForward phase is then followed by the weight update phase (see fig. 5).

On the left side of the schema, the subtraction between the desired value (t) and the
value obtained from the network (y) is performed first. Then, the multiplications between
the result of the subtraction, the input, and the learning rate are carried out. On the right
side of the schema, control tanks are present for the sign value of the multiplication

Implementing Perceptrons by Means of Water Based Computing 89

Fig. 4: Solution 1: Feed Forward phase

Fig. 5: Weight Update phase

(Smult3), sign value of old weight(Sw1old), and sign value of new weight(Sw1new).
Finally, there is a column of control tanks used to adjust the valves of the input tanks to
carry out the operations in the correct order.

3.2 Solution 2

In the second proposed solution, it has been chosen not to use tanks for the weights but
instead variable-sized pipes that connect the tanks. Formally, the system to implement
the perceptron is defined as follows:

90 N. Civiero, A. Henderson, T. Hinze, R. Nicolescu, C. Zandron

W = {(x1), (x2), (b), (S+), (S−), (Res), (Sw1), (Sx1), (Sw2), (Sx2), (Sb),

(Smultiplication1), (Smultiplication2), (reservoir)}

A = {(bnew), (sw1new), (sw2new), (sbnew), (e ′), (Start), (Smult1e),

(Smult1ne), (Smult2e), (Smult2ne), (Sbe), (Sbne), (b), (v)}

τ = {(x1, 2), (x2, 2), (b, 2), (S+, 10), (S−, 10), (Res, 2), (Sw1, 1), (Sx1, 1),

(Sw2, 1), (Sx2, 1), (Sb, 1),

(Smultiplication1, 1), (Smultiplication2, 1), (reservoir,∞)}

E = {(bnew > 0), (sw1new > 0), (sw2new > 0), (sbnew > 0), (e ′ > 0),

(Smultiplication1 > 0), (Smultiplication2 > 0), (Sb > 0), (b > 0),

(v < n)}

bnew =

{
1 if V bnew > 0

0 if otherwise

sw1new =

{
1 if V sw1new > 0

0 if otherwise

sw2new =

{
1 if V sw2new > 0

0 if otherwise

sbnew =

{
1 if V sbnew > 0

0 if otherwise

e ′ =

{
1 if e ′ > 0

0 if otherwise

start =

{
1 if time > 0

0 if otherwise

Smult1e =

{
1 if V Smultiplication1 = 0

0 if otherwise

Smult1ne =

{
1 if V Smultiplication1 > 0

0 if otherwise

Smult2e =

{
1 if V Smultiplication2 = 0

0 if otherwise

Implementing Perceptrons by Means of Water Based Computing 91

Smult2ne =

{
1 if V Smultiplication2 > 0

0 if otherwise

Sbe =

{
1 if V Sb = 0

0 if otherwise

Sbne =

{
1 if V Sb > 0

0 if otherwise

b =

{
1 if V b = 0

0 if otherwise

v =

{
1 if V v < n

0 if otherwise

Meaning that 1 marks the valve to be open and 0 closed, respectively.

P = {(reservoir, b, {bnew}), (x1, S+, {Smult1e, v}), (x1, S−, {Smult1ne, v}),
(x2, S+, {Smult2e, v}), (x2, S−, {Smult2ne, v}), (b, S+, {Sbe, v}),
(b, S−, {Sbne, v}), (S+, [(S+)− (S−)], {}), (S−, [(S+)− (S−)], {}),
([(S+)− (S−)], Res, {}), (Res, sink, {}), (reservoir, Sw1, {sw1new, e ′}),
(reservoir, Sw2, {sw2new, e ′}), (reservoir, Sb, {sbnew, e ′}),
(Sw1, xor, {start}), (Sx1, xor, {start}), (Sw2, xor, {start}),
(Sx2, xor, {start}), (Sb, sink, {start, b}), (xor, Smultiplication1, {}),
(xor, Smultiplication2, {})}

V 0 = {(x1; 0), (x2; 0), (b; 0), (S+; 0), (S−; 0), (Res; 0), (Sw1; 0),

(Sx1; 0), (Sw2; 0), (Sx2; 0), (Sb; 0), (Smultiplication1; 0),

(Smultiplication2; 0)}

S0 = {(reservoir, b, {bnew}, 0.1), (x1, S+, {SMult1e, v}, 0.1),

(x1, S−, {SMult1ne, v}, 0.1), (x2, S+, {SMult2e, v}, 0.1),

(x2, S−, {SMult2ne, v}, 0.1), (b, S+, {Sbe, v}, 0.1),

(b, S−, {Sbne, v}, 0.1), (S+, [(S+)− (S−)], {}, 0.1),

(S−, [(S+)− (S−)], {}, 0.1), ([(S+)− (S−)], Res, {}, 0.1),

(Res, sink, {}, 0.1), (reservoir, Sw1, {sw1new, e ′}, 0.1),

(reservoir, Sw2, {sw2new, e ′}, 0.1), (reservoir, Sb, {sbnew, e ′}, 0.1),

(Sw1, xor, {start}, 0.1), (Sx1, xor, {start}, 0.1), (Sw2, xor, {start}, 0.1),

(Sx2, xor, {start}, 0.1), (Sb, sink, {start, b}, 0.1),

(xor, Smultiplication1, {}, 0.1), (xor, Smultiplication2, {}, 0.1)}

92 N. Civiero, A. Henderson, T. Hinze, R. Nicolescu, C. Zandron

∆t = 1second

In the previous hypothesis, the connecting pipes between the tanks had the same
diameter and did not affect the amount of water flowing through the network. To allow
the passage of a "weighted" amount of water, a timer is used to regulate the opening of
valves present in each connecting pipe between the nodes. Assuming that each second,
an amount of water equal to the diameter of the pipe passes through each pipe, the water
flow between the tanks can be controlled. The idea is to simplify the network by reducing
the number of tanks and eliminating the multiplications involving the inputs and weights.
(see fig. 6)

To update the weights, we proceed as for the previous solution. In this case, however,
the timer cannot be utilized to calculate the new weight, because we need the weight
value in a tank in order to add it to the updated value.

To create a specific timer, the schema of Ring Oscillator presented in [3] is modified,
by adding a valve between tank T1 and T2 (we have changed the name of the tanks to
avoid confusion with the tanks representing the weights). The condition applied to the
valve is v 6= n, which means that the valve remains open until the value n is reached in
tank v (we also changed the name of tank y in v, to avoid confusion with tank y in the
update weight phase). Additionally, in tank v the tube and valve that allow water drainage
are removed. This way, in each iteration, it is ensured that tank v will receive a quantity
of water equal to 1 ,ideally assuming each iteration is 1 second (see fig. 7).

Fig. 6: Solution 2: Feed Forward phase

Implementing Perceptrons by Means of Water Based Computing 93

Fig. 7: Timer

4 Multilayer Perceptron

In multilayer Perceptron nodes have the same internal structure as for perceptron unit,
but it is necessary to create new structure/schema for activation functions and backward
propagation, and to modify the schema for updating weights.

Concerning activation functions, we have considered and implemented ReLu, Tanh,
and Sigmoid.

ReLu ReLu activation function is the simplest, for positive value the result is the input,
for negative value the result is zero. The implementation consists of a tank, and a control
valve so if the input is negative this valve is open and the volume of water in the tank is
zero. (For keeping the amount of water small, it is possible to set a max limit, to do that
we use a pipe set to a height value, if volume of water is over the value the water goes
into the sink).

Tanh Tanh activation function is more complex. We consider volume of water between
0 and 2. Over 2 we consider as the value is 2. We separate the input volume of water
into 3 tanks: in the first and second tank the maximum value of water is 0.5, while in the
third tank it is 1. To separate the input water, we consider a water cascade like the one
presented in [3], fig. 2, and we operate on the volume of water of each tank in a different
way. For the first tank we take all the volume of water, (for example if it is 0,4 the result
of tanh is 0,4). For second and third tank we set an outflow pipe with a different diameter
than 0,1 (default value), so for every second we have set a different outflow than 0,1,
equal to the diameter of the pipe. This volume of water is drained into another tank that
has two outflow pipes: one leads the water into the sink and the other into result tank,
and these pipes have a different diameter than 0,1.

94 N. Civiero, A. Henderson, T. Hinze, R. Nicolescu, C. Zandron

Sigmoid For sigmoid function we use the formula (tanh(x/2) + 1)/2.
We simply operate/compute the multiplication (x*0.5) on the input of tanh, add 1

and perform another multiplication on the result.

The activation functions just described can be compared with respect to three
difference aspects:
– Accuracy with respect to the mathematical function they implement
– The time needed to provide a result
– Ease of implementation, i.e. the number of tanks and pipes required to implment
them
Regarding ease of implementation, it appears that ReLU is the simplest, requiring

only one tank and a valve, while tanh and sigmoid are more complex, needing numerous
tanks and valves. This complexity affects the speed at which results are obtained. The
more complex a system is, the more time it takes to complete operations and achieve a
result. Regarding accuracy, ReLu stands out as the most accurate activation function,
providing precise results without any significant approximation errors. Tanh, as defined,
has a slight approximation error, while sigmoid suffers from significant errors due to the
multiplication by the value 0.5. In conclusion, it becomes evident that ReLU outperforms
both tanh and sigmoid functions in these three aspects.

4.1 Forward Propagation
Forward propagation phase is the same as for perceptron forward propagation, but in
a feedforward neural network structure, a unit will receive information of several units
belonging to the previous layer. We suppose to add all this information in one input tank
for each node.

4.2 Backward Propagation
In order to implement this phase, we first need to get the error value of the net. We use
the formula

δ = (t− y) ∗ f ′(y)

where f ′(y) is the first derivative, y is the output of the net, and t is the label value. The
idea for backward propagation is to rotate the net by 180 degrees, so that the output tank
become the input of the net. In this tank we put the error value, and then we propagate
that value in the net like we did in forward propagation. In each node we get a delta
value (that is, the error for each node); the delta values are used for updating the value of
weights.

4.3 Update Weights
In this phase we use the formula

wnewjk = woldjk + n ∗ δk ∗ yj
where wjk is the weight between the node k and node j, δk is the error calculated in the
current node, and yj is the output of upper layer node. The resulting schema is almost
the same as perceptron updating weights schema.

Implementing Perceptrons by Means of Water Based Computing 95

5 Discussion and Conclusions

In solution 1, the size of the network will be larger compared to that of solution 2, mainly
due to the higher number of multiplications and tangent operations required.

To implement the timer that regulates the valves in solution 2, a pump will be needed
to allow water to cycle through the three tanks. In a future implementation, the effects of
the pump on the network will also need to be taken into account.

Regarding training, the network in solution 2 requires that the connecting tubes
between the various nodes be changed with every weight update. This will surely make
the training process of the network much harder with respect to solution 1.

Summarizing, the network in solution 2 requires a smaller number of tanks, tubes,
and multiplication structures: as a consequence, it is the simplest to implement in terms
of size. On the contrary, the network in solution 1 is the simplest to train, as it does not
require modifying the dimension of the tubes every time the weight values change.

Future investigations concern the tests that could be conducted: for example, using
more precise learning rates (e.g. vary in hundredths rather than just decimal places), to
check whether or not better results can be obtained.

Studies on more complex networks such as RNN (Recurrent Neural Network) or
LSTM (Long Short-Term Memory) are another important research direction.

Acknowledgements

The work of Claudio Zandron was partially supported by Università degli Studi di
Milano-Bicocca, Fondo Ateneo per la Ricerca 2023, project 2023-ATE-0333.

References

1. Ballesteros, K. J., Cailipan, D. P. P., de la Cruz, R. T. A., Cabarle, F. G. C., Adorna, H. N.
(2022), Matrix representation and simulation algorithm of numerical spiking neural P systems,
Journal of Membrane Computing, 4(1), 2022, 41–55.

2. Dupaya, A. G. S., Galano, A. C. A. P., Cabarle, F. G. C., De La Cruz, R. T., Ballesteros,
K. J., Lazo, P. P. L., A web-based visual simulator for spiking neural P systems, Journal of
Membrane Computing, 4(1), 2022, 21–40.

3. T. Hinze, H. Happe, A. Henderson, R. Nicolescu, Membrane Computing with Water, Journal
of Membrane Computing, Springer, 2, 2020, 121–136.

4. A. Henderson, R. Nicolescu, M.J. Dinneen, T. Chan, H. Happe, T. Hinze, Turing Completeness
of Water Computing, Journal of Membrane Computing, Springer, 3(3), 2021, 182–193.

5. A. Henderson, R. Nicolescu, M.J. Dinneen, T. Chan, H. Happe, T. Hinze, Programmable and
Parallel Water Computing, Journal of Membrane Computing, Springer, 5(1), 2023, 25–54.

6. Ionescu, M., Păun, Gh., Yokomori, T., Spiking neural P systems, Fundamenta informaticae,
71(2, 3), 2006, 279–308.

7. A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron, Characterising the complexity
of tissue P systems with fission rules, Journal of Computer and System Sciences, 90, (2017),
115-128.

8. Leporati, A., Mauri, G., Zandron, C. Spiking neural P systems: main ideas and results, Natural
Computing, 21(4), 2022, 629-649.

96 N. Civiero, A. Henderson, T. Hinze, R. Nicolescu, C. Zandron

9. Liu, Y., Nicolescu, R., Sun, J., Formal verification of cP systems using PAT3 and ProB, Journal
of Membrane Computing, 2(2), 2020, 80–94.

10. Liu, Y., Nicolescu, R., Sun, J., Formal verification of cP systems using Coq, Journal of
Membrane Computing, 3(3), 205–220.

11. Martín-Vide, C., Păun, Gh., Pazos, J., Rodriguez-Paton, A., Tissue P systems, Theoretical
Computer Science, 296(2), 2003, 295–326.

12. McCulloch, W., Pitts, W., A Logical Calculus of Ideas Immanent in Nervous Activity, Bulletin
of Mathematical Biophysics 5 (4), 1943, 115–133. doi:10.1007/BF02478259.

13. Gh. Păun, Computing with membranes, Journal of Computer and System Sciences, 61(1),
2000, 108–143.

14. Gh. Păun, P systems with active membranes: Attacking NP-Complete problems, Journal of
Automata, Languages and Combinatorics, 6(1), 2001, 75–90.

15. Gh. Păun, G. Rozenberg, A. Salomaa, (Eds.), The Oxford Handbook of Membrane Computing,
Oxford University Press, New York, 2010.

16. Sosik, P, P systems attacking hard problems beyond NP: a survey, Journal of Membrane
Computing 1, 2019, 198–208.

17. Valencia-Cabrera, L., Perez-Hurtado, I., Martinez-del Amor, M.A., Simulation challenges in
membrane computing, Journal of Membrane Computing, 2, 2020, 1–11.

Conditional Uniport P Systems with Two Cells

Erzsébet Csuhaj-Varjú1 and Sergey Verlan2

1 Department of Algorithms and Their Applications,
Faculty of Informatics,

ELTE Eötvös Loránd University, Budapest,
Pázmány Péter sétány 1/c, 1117, Hungary

csuhaj@inf.elte.hu
2 Univ Paris Est Creteil, LACL, F-94010, Creteil, France

verlan@u-pec.fr

Abstract. Generalized communicating P systems or GCPSs are tissue-like P
systems (networks of cells) where each rule moves only two objects across the
cells. Depending on the source and target locations there are 8 types of such rules,
the most known being the symport and the antiport rules. Conditional uniport-in
and uniport-out rules are the simplest possible, involving the movement of a single
object, the other one remaining in its original location. For most variants of GCPSs,
three cells and their common environment have been shown to be sufficient to
achieve computational completeness with a single type of rules. In this paper,
we prove that GCPSs with only conditional-uniport-in rules, only two cells and
their common environment are Turing complete. We also show that there exist
k > 0 such that the family of recursively enumerable sets of numbers containing
only integers greater than or equal to k is equal to the family of sets of numbers
generated by GCPSs with only conditional uniport-out rules, only two cells, and
their common environment. These results are major improvements on the previous
results.

1 Introduction

Purely communicating P systems are membrane systems that operate only by moving
objects from one region to another, including the environment. They are of particular
interest because many of these P system variants are computationally complete, proving
that object evolution can be replaced by communication with the environment, where an
arbitrary number of instances of a type of object can be found. This implies that there are
always as many instances of these types of objects in the environment as are necessary to
perform the actual transition between the P system and the environment. The reader can
find detailed information on purely communicating P systems in [9].

Well-known variants of purely communicating P systems are generalized communi-
cating P systems (or GCPSs), introduced in [17], to provide a common generalization of
various such models.

A generalized communicating P system is a P system having a hypergraph structure (a
network of cells) where each node represents a cell and each hyperedge corresponds to a
rule. Every node contains a multiset of objects that can be communicated; communication

98 Erzsébet Csuhaj-Varjú and Sergey Verlan

means a move of objects between the cells across the hyperedge, according to prescribed
interaction (communication) rules.

The form of an interaction rule is (i, a)(j, b)→ (k, a)(l, b) where a and b are objects
and i, j, k, l are labels for the input and the output cells. Such a rule means that an object
a from cell i and an object b from cell j move synchronously (in one step) to cell k and
cell l, respectively. These rules are very simple since they describe the movement of only
two objects.

The system is embedded in an environment, represented by cell 0. The environment
may have certain objects in an arbitrary number of copies (also called in an unbounded
number of copies) and certain objects only in a finite number of copies. The generalized
communicating P system and the environment interact by using the communication
(interaction) rules given above, with the restriction that at every computation step only a
finite number of objects is allowed to enter any cell from the environment.

In each computation step, the rules are applied in a maximally parallel manner, as is
usual in P systems theory. A computation step may change the multisets representing the
contents of the cells (also called the configuration of the GCPS). A computation in a
GCPS is a sequence of configurations directly following each other, starting from the
initial configuration and ending in a halting configuration. The result of the computation
is the number of objects found in a distinguished cell, called the output cell.

It is worth noting that GCPS is the fruit of several mathematical generalizations of
the model of symport/antiport P systems [13] that corresponds to the formalization of
the biological process of co-transport. In [16] conditional uniport was introduced as
a simplification of the symport/antiport model, which also corresponds to a model of
biological communication through ion channels. Next, in [17] the GNPS model was
born, aiming to unify the definition of both concepts. It also introduced more complex
rules corresponding to hypergraph communication which in turn inspired the creation of
the formal framework for P systems [11] that allowed to capture many formal aspects of
the P system models [10,7,18,19].

During the years, GCPSs have been studied in detail. The simplicity of their rules and
their relation to other fields like the theory of Petri nets [5,4] raised interest in their study.

One of the most interesting problems is how many cells a GPCS must have to achieve
a certain computational power and how much its interaction rules can be simplified.

It has been shown that even restricted variants of generalized communicating P
systems (with respect to the form of rules) are able to generate any recursively enumerable
set of numbers. Furthermore, they include computationally complete models with a small
number of cells and a simple underlying hypergraph architecture [8,6,5,9,16,17]. For
example, GCPSs with only three cells and with only join rules, or only split rules, or
only chain rules are computationally complete [8]. In these cases, any rule operates with
three cells. It is also shown that the maximal computational power can also be obtained
if the alphabet of objects of the GPCSs is a singleton [5].

It is an interesting question whether in the case of the uniport-out and the uniport-in
rules, which involve two cells in each rule, two or more cells are necessary to obtain
computational completeness.

Conditional Uniport P Systems with Two Cells 99

The conditional-uniport-out rule (the uout rule) sends symbol b to cell l provided
that both symbol a and b are in cell i [16]; the conditional-uniport-in rule (the uin rule)
brings symbol b to cell i provided that a is in that cell.

In this paper, we prove that GCPSs with only conditional-uniport-in rules, only two
cells and their common environment are Turing complete. We also show that there exist
k > 0 such that the family of recursively enumerable sets of integers greater than or equal
to k is equal to the family of sets of numbers generated by GCPSs with only conditional
uniport-out rules, only two cells and their common environment.

These results are improvements on previous results from [6] where 30 cells were
used for the same result.

The paper is organized as follows. Section 2 gives the definitions and introduces the
model. The two main results are presented in Section 3. Finally, Section 4 gives some
ideas for the further research.

2 Definitions

The reader is supposed to be familiar with formal language theory and membrane
computing; for further details consult [15] and [14]. NRE denotes the family of
recursively enumerable sets of natural numbers. Nk denotes the set of natural numbers
greater than or equal to k and NkRE denotes the family of recursively enumerable sets
of natural numbers greater than or equal to k.

For a finite multiset of symbols X over an alphabet V , supp(X) denotes the set of
symbols in X (the support of X) and |X| denotes the total number of its symbols (its
size). The number of occurrences of symbol x in X is denoted by |X|x.

Throughout the paper, every finite multiset X is presented as a string w, where X
and w have the same number of occurrences of symbol a, for each a ∈ V . The empty
multiset is denoted by λ.

If no confusion arises, then the set of all finite multisets over V is denoted by V ∗.
A counter automaton is a 5-tupleM = (Q,R, q0, qf , P), where Q is a finite non-

empty set, called the set of states,R = {A1, . . . , Ak}, k ≥ 1, is a set of counters, called
also registers, q0 ∈ Q is the initial state, and qf ∈ Q is the final state. P is a set of
instructions of the following forms: (p,A+, q, s), where p, q, s ∈ Q, p 6= qf , A ∈ R,
called an increment instruction, or (p,A−, q), where p, q ∈ Q, p 6= qf , A ∈ R, called a
decrement instruction, or (p,A0, q), where p, q ∈ Q, p 6= qf , A ∈ R, called a zero-check
instruction. Without loosing the generality, it can be supposed that for every p ∈ Q,
(p 6= qf), there is exactly one instruction of the form either (p,A+, q, s) or (p,A−, q),
or (p,A0, q).

A configuration of a counter automaton M , defined above, is a (k + 1)-tuple
(q,m1, . . . ,mk), where q ∈ Q and m1, . . . ,mk are non-negative integers; q is the
current state ofM andm1, . . . ,mk are the current numbers stored in the registers (the
current contents of the registers or the value of the registers) A1, . . . Ak, respectively.

A transition of the counter automaton consists in executing an instruction. An
increment instruction (p,A+, q, s) ∈ P is performed if M is in state p, the number
stored in register A is increased by 1, and after thatM enters either state q or state s,
chosen non-deterministically. A decrement instruction (p,A−, q) ∈ P is performed if

100 Erzsébet Csuhaj-Varjú and Sergey Verlan

M is in state p, and if the number stored in registerA is positive, then it is decreased by 1,
and thenM enters state q. If the number stored in registerA is zero, then the computation
“blocks” and the corresponding non-deterministic computation branch is considered to
fail. A zero-check instruction (p,A0, q) ∈ P is performed ifM is in state p, and if the
number stored in register A is 0, then the contents of A remains unchanged andM enters
state q. If the contents of register A is not zero, then the computation “blocks” and the
corresponding non-deterministic computation branch is considered to fail.

A counter automaton M = (Q,R, q0, qf , P), with k registers, given as above,
generates a non-negative integern, if starting from the initial configuration (q0, 0, 0, . . . , 0)
it enters (in a non-deterministic manner) the final configuration (qf , n, 0, . . . , 0). The set
of non-negative integers generated byM is denoted by N(M).

We remark that counter automata are very closely related to register machines [12].
In fact, in a register machine the operations of minus and zero check are combined in a
single instruction (p,A−, r, s) that corresponds to instructions (p,A−, r) and (p,A0, s)
of the counter automaton.

Next we recall the basic definitions concerning generalized communicating P sys-
tems [17].

A generalized communicating P system (a GCPS) of degree n, where n ≥ 1, is an
(n+ 4)-tuple Π = (O,E,w1, . . . , wn, R, h) where

1. O is an alphabet, called the set of objects of Π;
2. E ⊆ O; called the set of environmental objects of Π;
3. wi ∈ O∗, 1 ≤ i ≤ n, is the multiset of objects initially associated to cell i;
4. R is a finite set of interaction rules or communication rules of the form

(i, a)(j, b)→ (k, a)(l, b), where a, b ∈ O, 0 ≤ i, j, k, l ≤ n, and if i = 0 and
j = 0, then {a, b} ∩ (O \ E) 6= ∅; i.e., at least one of a and b is not element of E.

5. h ∈ {1, . . . , n} is the output cell.

The system consists of n cells, labeled by natural numbers from 1 to n, which contain
multisets of objects over O. Initially, cell i contains multiset wi (the initial contents
of cell i is wi). An additional special cell, labeled by 0 and called the environment is
distinguished. The environment contains objects of E in an infinite number of copies.

The cells interact by means of the rules (i, a)(j, b)→ (k, a)(l, b), with a, b ∈ O and
0 ≤ i, j, k, l ≤ n. As the result of the application of the rule, object a moves from cell i
to cell k and b moves from cell j to cell l. If two objects from the environment move to
some other cell or cells, then at least one of them must not appear in the environment in
an infinite number of copies.

The structure of the system is a hypergraph implicitly deduced from the set of rules.
Indeed, a rule (i, a)(j, b)→ (k, a)(l, b) induces an hyperedge {i, k, j, l}. A generalization
of GNPS using more cells in a rule and also performing the rewriting lead to the notion
of the formal framework for P systems [11].

A configuration of a GCPS Π , as above, is an (n + 1)-tuple (z0, z1, . . . , zn) with
z0 ∈ (O \ E)∗ and zi ∈ O∗, for all 1 ≤ i ≤ n; z0 is the multiset of objects present
in the environment in a finite number of copies, whereas, for all 1 ≤ i ≤ n, zi is the
multiset of objects present inside cell i. The initial configuration ofΠ is the (n+1)-tuple
(λ,w1, . . . , wn).

Conditional Uniport P Systems with Two Cells 101

Given a multiset of rules R over R and a configuration u = (z0, z1, . . . , zn) of Π ,
we say that R is applicable to u if all its elements can be applied simultaneously to
the objects of multisets z0, z1, . . . , zn such that every object is used by at most one
rule. If there is no multisetR′ whereR is a proper submultiset ofR′ can be applied to
configuration u = (z0, z1, . . . , zn) of Π , then a new configuration u′ = (z′0, z

′
1, . . . , z

′
n)

is obtained by applyingR in a non-deterministic maximally parallel manner.
One such application of a multiset of rules satisfying the conditions listed above

represents a transition inΠ from configurationu to configurationu′. A transition sequence
is said to be a successful generation by Π if it starts with the initial configuration of
Π and ends with a halting configuration, i.e., with a configuration where no further
transition step can be performed.

In this paper, we deviate from the standard notation of the configuration to make it
easier to follow the movement between cells. Instead of u = (z0, z1, . . . ,
zn), we will use the notation u = (0, z0)(1, z1) · · · (n, zn). The numbers 1, . . . , n refer
to the label of the cell, and zi refers to the contents of cell i.

Π generates a non-negative integer n if there is a successful generation by Π such
that n is the size of the multiset of objects present inside the output cell in the halting
configuration. The set of non-negative integers generated by a GCPS Π in this way is
denoted by N(Π). If instead of counting all the objects present inside the output cell in
the halting configuration at the end of successful generations of Π we consider only the
number of objects from a nonempty subset O′ ⊆ O, then we denote the corresponding
set of numbers generated by NO′(Π).

In the following we recall the notions of the possible restrictions on the interaction
rules (modulo symmetry).We distinguish the following cases, called GCPSs withminimal
interaction:

1. i = j = k 6= l: the conditional-uniport-out rule (the uout rule) sends b to cell l
provided that a and b are in cell i [16];

2. i = k = l 6= j: the conditional-uniport-in rule (the uin rule) brings b to cell i
provided that a is in that cell [16];

3. i = j, k = l, i 6= k : the symport2 rule (the sym2 rule) corresponds to the minimal
symport rule [14], i.e., a and b move together from cell i to k;

4. i = l, j = k, i 6= j : the antiport1 rule (the anti1 rule) corresponds to the minimal
antiport rule [14], i.e., a and b are exchanged in cells i and k;

5. i = k and i 6= j, i 6= l, j 6= l: the presence-move rule (the presence rule) moves
the object b from cell j to l, provided that there is an object a in cell i and i, j, l are
pairwise different cells;

6. i = j, i 6= k, i 6= l, k 6= l : the split rule sends a and b from cell i to cells k and l,
respectively;

7. k = l, i 6= j, k 6= i, k 6= j : the join rule brings a and b together to cell k;
8. l = i, i 6= j, i 6= k and j 6= k : the chain rule moves a from cell i to cell k while b

is moved from cell j to cell i, i.e., to the cell where a located previously;
9. i, j, k, l are pairwise different numbers: the parallel-shift rule (the shift rule) moves
a and b from two different cells to another two different cells.

NOtPn(x) denotes the set of numbers generated by generalized communicating P
systems with minimal interaction of degree n, n ≥ 1, and with rules of type x, where

102 Erzsébet Csuhaj-Varjú and Sergey Verlan

x ∈ {uout, uin, sym2, anti1, presence, split, join, chain, shift}. NOtP∗(x) is the
notation for

⋃∞
n=1NOtPn(x).

3 Results

In this section, we discuss whether generalized communicating P systems of the uout
or uin type and with only two cells are universal or not. First, we prove that there exist
k > 0 such that the family of recursively enumerable sets of natural numbers greater
than or equal to k is equal to the family of sets of numbers generated by GCPSs with
only conditional uniport-out rules, only two cells and their common environment. We
then show that any recursively enumerable set of non-negative integers can be generated
by a GCPS with only conditional-uniport-in rules and only two cells and their common
environment. The converse of the latter statement also holds, thus this variant of GCPSs
is computationally complete.

We first describe the computational power of GCPSs of type uout and with only two
cells.

Theorem 1. There exist k > 0 such that NOtP2(uout) ⊇ NkRE.

Proof. Consider an arbitrary counter automatonM = (Q,C, q0, qf , P). We construct
the following GCPSΠ = (O,E,w1, w2, R, 1) (with conditional-uniport-out rules only).

O = Q ∪ {p1, p2, p′2 | (p,A+, q, q′) ∈ P} ∪ {p1, p2, p3 | (p,A0, q, q
′) ∈ P} ∪

{p1, p2, p3, p4 | (p,A−, q, q′) ∈ P} ∪ {L1, L2} ∪ E.

E = C ∪ {CA | A ∈ C} ∪ {L0, Z}.

w1 = {q0, L1, Z} ∪ {p1, p2 | p ∈ Q} ∪ {p′2 | (p,A+, q, q′) ∈ P} ∪ {p4 |
(p,A−, q, q′) ∈ P}.

w2 = (Q \ {q0}) ∪ {p3, p′ | p ∈ Q} ∪ {L2, Z}.

The set of rules R is defined as follows.

For any instruction (p,Ai+, q, q
′) of M the set of rules R contains the following

rules:

Conditional Uniport P Systems with Two Cells 103

p.1.1 : (1, p)(1, p1)→ (1, p)(2, p1)

p.2.1 : (1, p)(1, p2)→ (1, p)(0, p2) p.2.2 : (1, p)(1, p′2)→ (1, p)(0, p′2)

p.2.3 : (2, p1)(2, p3)→ (2, p1)(1, p3)

p.3.1 : (0, p2)(0, Ai)→ (0, p2)(2, Ai) p.3.2 : (0, p′2)(0, Ai)→ (0, p′2)(2, Ai)

p.3.3 : (1, p3)(1, p)→ (1, p3)(0, p)

p.4.1 : (0, p)(0, p2)→ (0, p)(2, p2) p.4.2 : (0, p)(0, p′2)→ (0, p)(2, p′2)

p.4.3 : (2, Ai)(2, p1)→ (2, Ai)(1, p1) p.4.4 : (1, Z)(1, p3)→ (1, Z)(0, p3)

p.5.1 : (0, p3)(0, p)→ (0, p3)(2, p) p.5.2 : (2, p2)(2, Ai)→ (2, p2)(1, Ai)

p.5.3 : (2, p′2)(2, Ai)→ (2, p′2)(1, Ai)

p.6.1 : (2, p2)(2, q)→ (2, p2)(1, q) p.6.2 : (2, p′2)(2, q′)→ (2, p′2)(1, q′)

p.6.3 : (0, Z)(0, p3)→ (0, Z)(2, p3)

p.7.1 : (2, p3)(2, p2)→ (2, p3)(1, p2) p.7.2 : (2, p3)(2, p′2)→ (2, p3)(1, p′2)

p.l.1 : (2, p2)(2, L2)→ (2, p2)(0, L2) p.l.2 : (2, p′2)(2, L2)→ (2, p′2)(0, L2)

p.l.3 : (2, Ai)(2, L2)→ (2, Ai)(0, L2) p.l.4 : (0, p)(0, L0)→ (0, p)(1, L0)

For any instruction (p,Ai0, q) ofM the set of rules R contains the following rules:

p.1.1 : (1, p)(1, p1)→ (1, p)(2, p1)

p.2.1 : (1, p)(1, p2)→ (1, p)(0, p2) p.2.2 : (2, p1)(2, p3)→ (2, p1)(1, p3)

p.3.1 : (0, p2)(0, CAi
)→ (0, p2)(2, CAi

) p.3.2 : (1, p3)(1, p)→ (1, p3)(0, p)

p.4.1 : (0, p)(0, p2)→ (0, p)(2, p2) p.4.2 : (2, CAi
)(2, p1)→ (2, CAi

)(1, p1)

p.4.3 : (1, Z)(1, p3)→ (1, Z)(0, p3)

p.5.1 : (0, p3)(0, p)→ (0, p3)(2, p) p.5.2 : (2, p2)(2, CAi
)→ (2, p2)(1, CAi

)

p.6.1 : (2, p2)(2, q)→ (2, p2)(1, q) p.6.2 : (0, Z)(0, p3)→ (0, Z)(2, p3)

p.6.3 : (1, CAi
)(1, Ai)→ (1, CAi

)(2, Ai)

p.7.1 : (2, p3)(2, p2)→ (2, p3)(1, p2)

p.8.1 : (1, p2)(1, CAi
)→ (1, p2)(0, CAi

)

p.l.1 : (2, p2)(2, L2)→ (2, p2)(0, L2) p.l.2 : (2, CAi
)(2, L2)→ (2, CAi

)(0, L2)

p.l.3 : (0, p)(0, L0)→ (0, p)(1, L0) p.l.4 : (2, Ai)(2, L2)→ (2, Ai)(0, L2)

For any instruction (p,Ai−, q) ofM the set of rules R contains the following rules:

104 Erzsébet Csuhaj-Varjú and Sergey Verlan

p.1.1 : (1, p)(1, p1)→ (1, p)(2, p1) p.1.2 : (1, p2)(1, p4)→ (1, p2)(0, p4)

p.2.1 : (1, p)(1, p2)→ (1, p)(0, p2) p.2.2 : (2, p1)(2, p3)→ (2, p1)(1, p3)

p.3.1 : (0, p2)(0, p4)→ (0, p2)(2, p4) p.3.2 : (1, p3)(1, p)→ (1, p3)(0, p)

p.4.1 : (0, p)(0, p2)→ (0, p)(2, p2) p.4.2 : (2, p1)(2, p4)→ (2, p1)(1, p4)

p.4.3 : (1, p3)(1, Ai)→ (1, p3)(0, Ai)

p.5.1 : (1, p4)(1, p3)→ (1, p4)(2, p3) p.5.2 : (2, p2)(2, p1)→ (2, p2)(1, p1)

p.6.1 : (1, p1)(1, p4)→ (1, p1)(0, p4) p.6.2 : (2, p2)(2, q)→ (2, p2)(1, q)

p.7.1 : (0, p4)(0, p)→ (0, p4)(2, p)

p.8.1 : (2, p)(2, p2)→ (2, p)(1, p2)

p.l.1 : (0, p2)(0, L0)→ (0, p2)(1, L0) p.l.2 : (1, p4)(1, L1)→ (1, p4)(0, L1)

p.l.3 : (1, p3)(1, L1)→ (1, p3)(0, L1)

The system also contains the following rules:

L.1 : (0, Z)(0, L2)→ (0, Z)(1, L2) L.2 : (1, Z)(1, L2)→ (1, Z)(0, L2)

L.3 : (1, Z)(1, L0)→ (1, Z)(2, L0) L.4 : (2, Z)(2, L0)→ (2, Z)(1, L0)

L.5 : (0, Z)(0, L1)→ (0, Z)(2, L1) L.6 : (2, Z)(2, L1)→ (2, Z)(0, L1)

We claim thatΠ simulatesM . More precisely, we claim that there exists k ≥ 0 such
that N(M) + k = N(Π) (x ∈ N(M) implies x+ k ∈ N(Π) and y ∈ N(Π) implies
y − k ≥ 0 and y − k ∈M).

In the proof we encode the configuration of M in Π and then we show that
there exists a bisimulation between configurations of M and the corresponding en-
coding in Π . For a configuration C = (p, v1, . . . , vn), n = |C| of M we define
code(C) = (0, λ)(1, w1p

⋃
c∈C A

vc
c)(2, w2). We observe that the initial configuration

of Π is code(q0, 0, . . . , 0).
We will start by showing that if there is a transition C⇒ C′ inM , then inΠ there is

a computation code(C)⇒∗ code(C′). Let us consider the case of each instruction.
Suppose that (p, v1, . . . , vi, . . . , vn) ⇒r (q, v1, . . . , vi + 1, . . . , vn), where r :

(p,Ai+, q, q
′). In Π there exists the following derivation (in configurations below

we indicate only objects that are moved):

(0, λ)(1, pp1p2p
′
2)(2, p3qq

′)⇒p.1.1 (0, λ)(1, pp2p
′
2)(2, p1p3qq

′)⇒p.2.1,p.2.3

(0, p2)(1, pp′2p3)(2, p1qq
′)⇒p.3.1,p.3.3 (0, pp2)(1, p′2p3)(2, Aip1qq

′)⇒p.4.1,p.4.3,p.4.4

(0, pp3)(1, p1p
′
2)(2, Aip2qq

′)⇒p.5.1,p.5.2 (0, p3)(1, Aip1p
′
2)(2, pp2qq

′)⇒p.6.1,p.6.3

(0, λ)(1, Aip1p
′
2q)(2, pp2p3q

′)⇒p.7.1 (0, λ)(1, Aip1p2p
′
2q)(2, pp3q

′)

It is obvious that if rule p.3.2 is used instead of p.3.1 then in the final configuration q
is replaced by q′.

Conditional Uniport P Systems with Two Cells 105

Now consider (p, v1, . . . , vi−1, 0, . . . , vn) ⇒r (q, v1, . . . , vi−1, 0, . . . , vn), where
r : (p,Ai0, q). In Π there exists the following derivation (in configurations below we
indicate only objects that are moved):

(0, CAi
)(1, pp1p2)(2, p3q)⇒p.1.1 (0, CAi

)(1, pp2)(2, p1p3q)⇒p.2.1,p.2.2

(0, CAi
p2)(1, pp3)(2, p1q)⇒p.3.1,p.3.2 (0, pp2)(1, p3)(2, CAi

p1q)⇒p.4.1,p.4.2,p.4.3

(0, pp3)(1, p1)(2, CAi
p2q)⇒p.5.1,p.5.2 (0, p3)(1, CAi

p1)(2, pp2q)⇒p.6.1,p.6.2

(0, λ)(1, CAi
p1q)(2, pp2p3)⇒p.7.1 (0, λ)(1, CAi

p1p2q)(2, pp3)⇒p.8.1

(0, CAi
)(1, p1p2q)(2, pp3) = (0, λ)(1, p1p2q)(2, pp3)

This simulation is very similar to the increment case. In fact, instead of bringing a
copy of register symbol Ai a checker symbol CAi

is brought to cell 1 using identical
rules. The checker symbol verifies that at step 7 there are no copies of Ai in cell 1 (by
not taking part in rule p.7.2) and then goes back to cell 0.

Now consider (p, v1, . . . , vi, . . . , vn)⇒r (q, v1, . . . , vi − 1, . . . , vn), where vi > 0
and r : (p,Ai−, q). In Π there exists the following derivation (in configurations below
we indicate only objects that are moved):

(0, λ)(1, Aipp1p2p4)(2, p3q)⇒p.1.1,p.1.2 (0, p4)(1, Aipp2)(2, pp1p3q)⇒p.2.1,p.2.2

(0, p2p4)(1, Aipp3)(2, p1q)⇒p.3.1,p.3.2 (0, pp2)(1, Aip3)(2, p1p4q)⇒p.4.1,p.4.2,p.4.3

(0, Aip)(1, p3p4)(2, p1p2q)⇒p.5.1,p.5.2 (0, Aip)(1, p1p4)(2, p2p3q)⇒p.6.1,p.6.2

(0, Aipp4)(1, p1q)(2, pp2p3)⇒p.7.1 (0, Aip4)(1, p1q)(2, pp2p3)⇒p.8.1

(0, Aip4)(1, p1p2q)(2, pp3)

The overall simulation in this case also follows the above pattern, however here p2
brings back to cell 1 symbol p4 that allows to move out p3 that performs the decrement.

We remark, that on the first step, all symbols p4, (p,Ai−, q) ∈ P will go to cell 0
and will remain there until the end of the computation, returning to cell 1 only if
corresponding instruction is simulated.

Now let us show that any evolution of Π except the above ones leads to an infinite
loop. This will prove the converse part of the bisimulation.

Consider a configuration of Π corresponding to code(p, v1, . . . , vn), where p is an
increment instruction (p,Ai+, q, q

′).

Step 1: The corresponding configuration in Π is (0, λ)(1, pp1p2p
′
2)(2, p3qq

′). Instead
of rule p.1.1 one of rules p.2.1 or p.2.2 could be applied. We will consider the first case,
the other one is symmetrical.

(0, λ)(1, pp1p2p
′
2)(2, p3qq

′)⇒p.2.1 (0, p2)(1, pp1p
′
2)(2, p3qq

′)

At this moment there are only two possible applicable multisets of rules: p.1.1, p.3.1
and p.2.2, p.3.1. When applying the first multiset, we obtain:

(0, p2)(1, pp1p
′
2)(2, p3qq

′)⇒p.1.1,p.3.1 (0, p2)(1, pp′2)(2, Aip1p3qq
′)

At this moment two multisets of rules are applicable p.2.2, p.l.3 and p.2.2, p.4.3,
p.3.1. In the first case, the loop symbol L2 is brought to cell 0 and the system will get

106 Erzsébet Csuhaj-Varjú and Sergey Verlan

stuck in an infinite loop using rules L.1 and L.2. By using the second group of rules an
additional Ai is brought to cell 2 and at the next step it will push the loop symbol L2 to
cell 0 using rule p.l.3, bringing the computation to an infinite loop.

Not let us consider the case of the application of the multiset p.2.2, p.3.1:

(0, p2)(1, pp1p
′
2)(2, p3qq

′)⇒p.2.1,p.3.1 (0, p2p
′
2)(1, pp1p

′
2)(2, Aip3qq

′)

At the next step rule p.l.3 will be necessarily applied, yielding an infinite loop.

Step 2: On the second step it is also possible to apply the multiset p.2.2, p.2.3, however
this case is symmetrical with respect to the considered one.

Step 3: There is only one other option: to apply the multiset of rules p.2.2, p.4.4, p.3.1:

(0, p2)(1, pp3p
′
2)(2, p1qq

′)⇒p.2.2,p.4.4,p.3.1 (0, p2p
′
2p3)(1, p)(2, Aip1qq

′)

Now two multisets of rules are applicable: p.3.1, p.3.2, p.l.3, p.4.4 and also
p.3.1, p.3.2, p.4.4, p.4.3. In the first case the loop symbol L2 is introduced to cell 0,
yielding an infinite loop. In the second case, cell 2 contains 3 symbols Ai, hence at the
next step the rule p.l.3 will be applied, yielding an infinite loop for the computation.

Step 4: On the third step three more multisets of rules are applicable:
p.3.1, p.4.4, p.l.3, p.l.4; p.3.1, p.4.4, p.4.3, p.l.4 and p.4.1, p.4.4, p.l.3. However they
either involve the application of rule p.l.3 or p.l.4 (by not keeping busy symbol Ai in
cell 2 or symbol p in cell 0).

Step 5: It is not difficult to observe that at this step the only way to keep busy symbols
Ai and p is to apply rules p.5.1 and p.5.2. Any other combination of rules force one of
these symbols to be used in rule p.l.3 or p.l.4.

Step 6: The other applicable multiset of rules is p.l.1, which results in an infinite loop.

Step 7: Here again, the only other possibility is to apply rule p.l.1, which results in an
infinite loop.

We remark that the corresponding sequences of states are shown on the figure
uniport_out_plus in the appendix.

Consider a configuration of Π corresponding to code(p, v1, . . . , vn), where p is an
increment instruction (p,Ai−, q). Suppose that the value of the register Ai is not zero
(hence, there is at least one symbol Ai). By considering the derivation given above, the
only options at each step involve the use of the rule p.l.1 or p.l.2, see the appendix picture
uniport_out_minus_nz for more details.

If the value of the register is zero, then on step 4 symbol p3 cannot be involved in
rule p.4.3, hence rule p.l.3 will be applied, bringing L1 to cell 0 and starting an infinite
loop. See more details in the appendix, picture uniport_out_minus_z.

Consider a configuration of Π corresponding to code(p, v1, . . . , vn), where p is an
increment instruction (p, 0Ai, q). Suppose that the value of the register Ai is zero (hence,
there is no symbol Ai in cell 1).

Conditional Uniport P Systems with Two Cells 107

Step 1: Beside the evolution above, the rule p.2.1 can be applied (and then only one case
is possible for the next step):

(0, CAi
)(1, pp1p2)(2, p3q)⇒p.2.1 (0, CAi

p2)(1, pp1)(2, p3q)⇒p.1.1,p.3.1

(0, p2)(1, p)(2, CAi
p1p3q)

Now there are twomultisets of rules applicable: p.3.1, p.2.2, p.l.2 and also p.3.1, p.4.2.
In the first case the system gets into an infinite loop, while in the second case two copies
of CAi

are present in cell 2, which means that at the next step rule p.l.2 will be applied,
yielding an infinite loop.

Step 2: There are no other applicable rules.

Step 3: There is another applicable multiset of rules p.3.1, p.4.3:

(0, CAi
p2)(1, pp3)(2, p1q)⇒p.3.1,p.4.3 (0, p2p3)(1, p)(2, CAi

p1q)

At this moment the two possible options lead to an infinite loop.

Steps 4–7: All possible variants at these steps involve the application of one of the rules
p.l.1− p.l.4, yielding to an infinite loop. See picture uniport_out_zero_z in the appendix
for more details.

If the value of the register is not zero, then on step 8 symbol CAi
will be involved

in rule p.6.3, sending a copy of Ai to cell 1. At the next step rule p.l.4 will be applied,
starting an infinite loop. See more details in the appendix, picture uniport_out_zero_nz.

Hence, we have shown that a successful computation in Π passes through configura-
tions corresponding to an encoding of the configuration ofM . Hence, it is possible to
reconstruct a computation inM from any computation in Π .

To conclude the proof, we observe that the value of k corresponds to the number of
additional symbols in cell 1 and which depend in their turn on the number of instructions
of the register machine. It is equal to k = 4N+ + 3(N0 + N−) + 1, where N+, N−
and N0 is the number of increment, decrement and zero instructions, respectively. Since
there exists a universal counter automaton (hence having a fixed number of instructions),
the statement of the Theorem follows.

By invoking the Church-Turing thesis we obtain the following result.

Corollary 1. There exist k > 0 such that NOtP2(uout) = NkRE.

Now we examine the case of GCPSs with only conditional-uniport-in rules.

Theorem 2. NOtP2(uin) ⊇ NRE.

Proof. We show that any recursively set of non-negative integers can be generated by
a GCPS with two cells and with only conditional-uniport-in rules. Unlike the proof
of the previous theorem, we give only the main ideas and the necessary details of
the proof, leaving the rest to the reader. Let M = (Q,R, q0, qf , P) be a counter
automaton, withR = {A1, . . . , Ak}, k ≥ 1, defined as in Section 2. We give a GCPS

108 Erzsébet Csuhaj-Varjú and Sergey Verlan

Π = (O,E,w1, w2, R, 1) with only conditional-uniport-in rules such that any halting
transition sequence ofΠ corresponds to a halting transition sequence ofM . Furthermore,
the numbers generated by these two transition sequences are the same.

Let Π have the following components. (Since it is clear from the context, we use the
symbol Aj also in case of Π).

O = {Aj , CAj , XAj | 1 ≤ j ≤ k}∪
Q ∪ {pi | (p,Aj+, q, q′) ∈ P, 1 ≤ i ≤ 6, 1 ≤ j}∪
{pi | (p,Aj0, q) ∈ P, 1 ≤ i ≤ 6} ∪ {pi | (p,A−, q) ∈ P, 1 ≤ i ≤ 6}∪
{L,L1, Z, F, qf , q

′
f}.

E = {Aj , CAj
, XAj

| 1 ≤ j ≤ k} ∪ {Z,L,L1}.
We note that number n, n ≥ 0 stored in register Aj inM , 1 ≤ j ≤ k, is represented

by Anj in Π .
We give the initial configuration. Let w1 = q0 and let w2 ∈ ((O \ {q0}) \ E)∗ ∪

{L,L1, Z} such that any symbol in w2 appears in only one copy in w2.
We give the sets of rules of Π which simulate the instructions ofM and only that

and provide the necessary details of the proof.
We start with simulating the instructions for increment inM .
For any instruction (p,Ai+, q, q

′) ofM , 1 ≤ i ≤ k, the set of rules in P consists of
the following rules.

p.1.1 : (1, p)(2, p1)→ (1, p)(1, p1)

p.2.1 : (1, p)(2, p2)→ (1, p)(1, p2) p.2.2 : (0, Z)(1, p1)→ (0, Z)(0, p1)

p.3.1 : (0, p1)(1, p)→ (0, p1)(0, p) p.3.2 : (1, p2)(2, p3)→ (1, p2)(1, p3)

p.4.1 : (0, p)(1, p2)→ (0, p)(0, p2) p.4.2 : (1, p3)(2, p4)→ (1, p3)(1, p4)

p.4.3 : (0, p1)(2, p4)→ (0, p1)(0, p4)

p.5.1 : (1, p4)(2, p5)→ (1, p4)(1, p5) p.5.2 : (1, p3)(0, A)→ (1, p3)(1, A)

p.5.3 : (2, Z)(0, p)→ (2, Z)(2, p) p.5.4 : (0, p2)(2, p6)→ (0, p2)(0, p6)

p.5.5 : (1, p4)(2, p6)→ (1, p4)(1, p6)

p.6.1 : (0, p2)(1, p3)→ (0, p2)(0, p3) p.6.2 : (2, p)(0, p1)→ (2, p)(2, p1)

p.6.3 : (1, p5)(2, q)→ (1, p5)(1, q) p.6.4 : (1, p5)(2, q′)→ (1, p5)(1, q′)

p.7.1 : (0, p2)(1, p5)→ (0, p2)(0, p5) p.7.2 : (2, p1)(0, p3)→ (2, p1)(2, p3)

p.8.1 : (2, p3)(0, p2)→ (2, p3)(2, p2) p.8.2 : (2, Z)(0, p5)→ (2, Z)(2, p5)

p.8.3 : (2, p1)(1, p4)→ (2, p1)(2, p4)

p.9.1 : (2, p2)(0, p6)→ (2, p2)(2, p6)

p.l.1 : (0, p2)(2, L)→ (0, p2)(0, L) p.l.2 : (0, p4)(2, L)→ (0, p4)(0, L)

p.l.3 : (0, p2)(2, L)→ (0, p2)(0, L) p.l.4 : (1, p2)(2, L)→ (1, p2)(1, L)

p.l.5 : (1, p6)(2, L)→ (1, p6)(1, L)

L.1 : (0, Z)(0, L)→ (0, Z)(1, L) L.2 : (1, Z)(1, L)→ (1, Z)(0, L)

Conditional Uniport P Systems with Two Cells 109

Each instruction (p,Ai+, q, q
′) ofM is simulated by a sequence of transitions in Π

associated to this instruction. The transition sequence starts with a configuration where
cell 1 contains p and a multiset of elements of {A1, . . . , Ak}. Cell 2 contains a multiset
consisting of elements ofQ \ {p}, elements of {ri | 1 ≤ i ≤ 6, r ∈ Q} and L,L1, Z, q

′
f .

Each symbol in cell 2 occurs in only one copy. Symbols L,L1 are called loop symbols,
Z is an auxiliary symbol, and symbols ri, 1 ≤ i ≤ 6, r ∈ Q are auxiliary symbols
associated to r. We briefly explain how the transitions of Π work. In the following, only
those symbols in each configuration that are relevant for the simulation will be listed.

The simulation starts from configuration (0, λ)(1, [Ai]p)(2, p1p2p3p4p5p6qq
′),

where [Ai] denotes an arbitrary finite multiset of symbols Ai.
After performing some transitions from the above initial configuration, Π should

enter the configuration (0, λ)(1, [Ai]Aiq)(2, p1p2p3p4p5p6pq
′) ; or with q′ in cell 1

instead of q. In this case one instance of Ai left the environment and entered cell 1, and
this is denoted by [Ai]Ai in cell 1 (there is one more copy of Ai in the cell). Symbol p
from cell 1 and symbol q (or q′) from cell 2 swapped their place. The motion of these
symbols is done as follows. In the first phase of the simulation, the auxiliary symbols
p1, p and p2 move to the environment, in this order. After then, p moves to cell 2 and
a symbol Ai from the environment moves to cell 1. Meanwhile, the auxiliary symbols
p3, p4, p5 and p6 leave their original location and move to cell 1. The order in which
the rules are executed is governed by both the movement of the auxiliary symbols and
the rules that introduce and move loop symbols (L-rules for short), i.e. the rules which
generate an infinite loop. If a rule introduces a loop symbol, then an infinite loop is
started in the generation, thus the generation will not end.

The next step in the simulation of the instruction is to move the symbol q (or q′) to
cell 1 and return the auxiliary symbols pi, 1 ≤ i ≤ 6 to cell 2. The simulation of the
instruction ofM ends when q is in cell 1 and the auxiliary symbols pi are in cell 2. The
correct execution order of the rule sets is again ensured by the existence of the L-rules.
If the rule set is executed in some incorrect order, the generation never finishes. Note
that the rules are specified such that the simulation of a new instruction can only start
if the new configuration is of the form (0, λ)(1, [Ai]Aiq)(2, p1p2p3p4p5p6pq

′). If the
simulation of an instruction starts before this configuration is obtained, an infinite loop is
generated within a few steps.

The following generation corresponds to a correct derivation in Π , described above.

(0, λ)(1, [Ai]p)(2, p1p2p3p4p5p6qq
′)⇒p.1.1 (0, λ(1, [Ai]pp1)(2, p2p3p4p5p6qq

′)

⇒p.2.1,p.3.1 (0, p1)(1, [Ai]pp2)(2, p3p4p5p6qq
′)⇒p.4.1,p.4.2

(0, pp1)(1, [Ai]p2p3)(2, p4p5p6qq
′)⇒p.5.1,.5.2 (0, pp1p2)(1, [Ai]p3p4)(2, p5p6qq

′)

⇒p.5.3,p.5.4 (0, p1p2p6)(1, [Ai]Ap3p4p5)(2, pqq′)

⇒p.6.1,p.6.3 (0, p2p3p6)(1, [Ai]Ap4p5q)(2, pp1q
′)

⇒p.7.1,p.7.2 (0, p2p5p6)(1, [Ai]Ap4q)(2, pp1p3q
′)

⇒p.8.1,p.8.2 (0, p6)(1, [Ai]Aq)(2, pp1p2p3p4p5q
′)

⇒p.9.1 (0, λ)(1, [Ai]Aq)(2, pp1p2p3p4p5p6q
′)

110 Erzsébet Csuhaj-Varjú and Sergey Verlan

An example for a derivation tree that belongs to the simulation of the instruction is
depicted in the appendix, in the figure uniport_in_plus. In the figure, the reader can find
the configurations which imply an infinite loop of the generation. The reader can find
notations [A, k] (k is a number) in the figure which denotes the multiset consisting of k
instances of A.

Next, we consider the simulation of decrement. We use the same notations as above.
For any instruction (p,Ai0, q) ofM , 1 ≤ i ≤ k, the set of rules R consists of the

following rules:

p.1.1 : (1, p)(2, p1)→ (1, p)(1, p1)

p.2.1 : (1, p)(2, p2)→ (1, p)(1, p2) p.2.2 : (0, Z)(1, p1)→ (0, Z)(0, p1)

p.3.1 : (0, p1)(1, p)→ (0, p1)(0, p) p.3.2 : (1, p2)(2, p3)→ (1, p2)(1, p3)

p.4.1 : (0, p)(1, p2)→ (0, p)(0, p2) p.4.2 : (1, p3)(2, p4)→ (1, p3)(1, p4)

p.4.3 : (0, p1)(2, p4)→ (0, p1)(0, p4)

p.5.1 : (1, p4)(2, p5)→ (1, p4)(1, p5) p.5.2 : (1, p3)(0, CA)→ (1, p3)(1, CA)

p.5.1 : (2, Z)(0, p)→ (2, Z)(2, p) p.5.2 : (0, p2)(2, p6)→ (0, p2)(0, p6)

p.5.3 : (1, p4)(2, p6)→ (1, p4)(1, p6)

p.6.1 : (0, p2)(1, p3)→ (0, p2)(0, p3) p.6.2 : (2, p)(0, p1)→ (2, p)(2, p1)

p.6.3 : (1, p5)(2, q)→ (1, p5)(1, q) p.6.4 : (2, Z)(1, CAi
)→ (2, Z)(2, CAi

)

p.7.1 : (0, p2)(1, p5)→ (0, p2)(0, p5) p.7.2 : (2, p1)(0, p3)→ (2, p1)(2, p3)

p.7.3 : (2, CAi
)(1, Ai)→ (2, CAi

)(2, Ai)

p.8.1 : (2, p3)(0, p2)→ (2, p3)(2, p2) p.8.2 : (2, p1)(1, p4)→ (2, p1)(2, p4)

p.8.3 : (0, p5)(2, CAi
)→ (0, p5)(0, CAi

)

p.9.1 : (2, p2)(0, p6)→ (2, p2)(2, p6) p.9.2 : (2, p4)(0, p5)→ (2, p4)(2, p5)

p.l.1 : (0, p2)(2, L)→ (0, p2)(0, L) p.l.2 : (0, p4)(2, L)→ (0, p4)(0, L)

p.l.3 : (0, p3)(2, L)→ (0, p3)(0, L) p.l.4 : (0, p5)(2, L)→ (0, p5)(0, L)

p.l.5 : (1, p2)(2, L)→ (1, p2)(1, L) p.l.6 : (1, p6)(2, L)→ (1, p6)(1, L)

p.l.7 : (2, Ai)(0, L1)→ (2, Ai)(2, L1)

p.l.8 : (0, Z)(2, L1)→ (0, Z)(0, L1)

L.1 : (0, Z)(0, L)→ (0, Z)(1, L) L.2 : (1, Z)(1, L)→ (1, Z)(0, L)

L.3 : (1, Z)(1, L1)→ (1, Z)(2, L1) L.4 : (2, Z)(2, L1)→ (2, Z)(1, L1)

The proof is similar to the previous one.With a special symbolCAi
, we check whether

or not there exists a symbolAi in the register, i.e. the number stored in the register is zero
or not. The instruction is successfully performed if no Ai can be found in the register. To
simulate the instruction, we start with the configuration (0, λ)(1, p)(2, p1p2p3p4p5p6q),

Conditional Uniport P Systems with Two Cells 111

where CAi is a symbol in E. As in the previous case, we indicate only those symbols
which are involved in the generation. To perform a correct simulation, we should obtain
the configuration (0, λ)(1, q)(2, p1p2p3p4p5p6p). As previously, in the first phase of the
generation, symbols p1, p, and p2, in this order, move to the environment. After then, p
and p6 swap their places, i.e. p enters cell 2 and p6 enters the environment. At the same
step, symbols q and and an instance of CAi enter cell 1, and later CAi moves to cell 2. If
there is an Ai in cell 1, then rule p.7.3 : (2, CAi)(1, A)→ (2, CAi)(2, Ai) is performed
and by applying rule p.l.7 : (2, Ai), (0, L1) → (2, Ai)(2, L1) the generation enters a
loop. The rule set is organized in such manner that if Ai occurs in cell 1, then rule p.7.3
should be performed before p.8.3, thus the presence of CAi

and Ai in the configuration
certainly will imply an infinite loop in the generation. Otherwise, CAi

returns to the
environment by applying rule p.8.3 : (0, p5)(2, CAi) → (0, p5)(0, CAi). Since no Ai
was found in cell 1, q is in cell 1, and p is in cell 2, in the rest of the the generation the
auxiliary symbols return to cell 2.

We demonstrate the generation when the register does not contain symbol Ai.

(0, λ)(1, p)(2, p1p2p3p4p5p6q)⇒p.1.1 (0, λ)(1, pp1)(2, p2p3p4p5p6q)⇒p.2.1,p.2.2

(0, p1)(1, pp2)(2, p3p4p5p6q)⇒p.3.1,p.3.2 (0, pp1)(1, p2p3)(2, p4p5p6q)⇒p.4.1,p.4.2

(0, pp1p2)(1, p3p4)(2, p5p6q)⇒p.5.1,p.5.2 (0, p1p2p6)(1, CAi
p3p4p5)(2, pq)

⇒p.6.1,p.6.2,p.6.3,p.6.4 (0, p2p3p6)(1, p4p5q)(2, CAi
pp1)⇒p.7.1,p.7.2

(0, p2p5p6)(1, p4q)(2, CAi
pp1p3)⇒p.8.1,p.8.2,p.8.3 (0, p5p6)(1, q)(2, pp1p2p3p4)

⇒p.9.1,p.9.2 (0, λ)(1, q)(2, pp1p2p3p4p5p6)

When the register contains at least one Ai, then the generation is the same as
above until rule p.7.3 : (2, CAi

)(1, Ai) → (2, CAi
)(2, Ai) can be performed. Then

an infinite loop will occur, since rule p.l.7 : (2, Ai)(2, L1) → (2, Ai)(2, L1) and rule
p : (0, Z)(2, L1) → (0, Z)(0, L1) are L-rules that form a loop and there is no rule
for moving Ai from cell 2 to some other cell. The reader can find an example for the
complete derivation tree in the appendix, in figure uniport_in_zero_z.

For any instruction (p,Ai−, q) ofM , 1 ≤ i ≤ k, the set of rules of Π consists of
the following rules:

112 Erzsébet Csuhaj-Varjú and Sergey Verlan

p.1.1 : (1, p)(2, p1)→ (1, p)(1, p1)

p.2.1 : (1, p)(2, p2)→ (1, p)(1, p2) p.2.2 : (0, Z)(1, p1)→ (0, Z)(0, p1)

p.3.1 : (0, p1)(1, p)→ (0, p1)(0, p) p.3.2 : (1, p2)(2, p3)→ (1, p2)(1, p3)

p.4.1 : (0, p)(1, p2)→ (0, p)(0, p2) p.4.2 : (1, p3)(2, p4)→ (1, p3)(1, p4)

p.4.3 : (0, p1)(2, p4)→ (0, p1)(0, p4)

p.5.1 : (1, p4)(2, p5)→ (1, p4)(1, p5) p.5.2 : (1, p3)(0, XAi)→ (1, p3)(1, XAi)

p.5.3 : (2, Z)(0, p)→ (2, Z)(2, p) p.5.4 : (0, p2)(2, p6)→ (0, p2)(0, p6)

p.5.5 : (1, p4)(2, p6)→ (1, p4)(1, p6)

p.6.1 : (0, p2)(1, p3)→ (0, p2)(0, p3) p.6.2 : (2, p)(0, p1)→ (2, p)(2, p1)

p.6.3 : (1, p5)(2, q)→ (1, p5)(1, q)

p.6.4 : (0, p6)(1, Ai)→ (0, p6)(0, Ai) p.6.5 : (2, Z)(1, XAi)→ (2, Z)(2, XAi)

p.7.1 : (0, p2)(1, p5)→ (0, p2)(0, p5) p.7.2 : (2, p1)(0, p3)→ (2, p1)(2, p3)

p.7.3 : (2, XAi)(0, p6)→ (2, XAi)(2, p6)

p.8.1 : (2, p3)(0, p2)→ (2, p3)(2, p2) p.8.2 : (2, Z)(0, p5)→ (2, Z)(2, p5)

p.8.3 : (2, p1)(1, p4)→ (2, p1)(2, p4) p.8.4 : (0, Z)(2, XAi)→ (0, Z)(0, XAi)

p.l.1 : (0, p2)(2, L)→ (0, p2)(0, L) p.l.2 : (0, p4)(2, L)→ (0, p4)(0, L)

p.l.3 : (0, p3)(2, L)→ (0, p3)(0, L) p.l.4 : (0, p6)(2, L)→ (0, p6)(0, L)

p.l.5 : (1, p2)(2, L)→ (1, p2)(1, L) p.l.6 : (1, p6)(2, L)→ (1, p6)(1, L)

L.1 : (0, Z)(0, L)→ (0, Z)(1, L) L.2 : (1, Z)(1, L)→ (1, Z)(0, L)

The idea of the proof is based on similar ideas to the proof of the previous case. In
the environment, there exists a symbol XAi

which checks whether or not there exists an
instance ofAi in cell 1, and if it is the case, then bothAi andXAi

move to the environment.
The simulation starts with a configuration of the form (0, λ)(1, [Ai]p)(2, p1p2p3p4p5p6q).
(As above, [Ai] denotes a finite multiset of symbols Ai.) Similarly to the previous case,
in the first phase of the generation symbols p1, p, and p2 move to the environment and
auxiliary symbols p3 and p4 move to cell 1. After thatXAi moves to cell 1 and p6 moves
to the environment.

In the next step, p and q swap their place, one occurrence of Ai (if it exists in cell
1) enters the environment with the assistance of p6, and meanwhile XAi

moves to cell
2. After that p6 leaves to environment and joins XAi in cell 2. Thus, the first phase of
the simulation is finished. In the second phase of the simulation, XAi returns to the
environment and all the auxiliary symbols pi, 1 ≤ i ≤ 6 return to their original place,
namely, cell 2. If no symbol Ai exists in the register, i.e., the register stores zero, then
the rule p.6.4 : (0, p6)(1, Ai) → (0, p6)(0, Ai) cannot be performed. In this case rule
p.l.4 : (0, p6)(2, L) → (0, p6)(0, L) is applied and an infinite loop will occur. As in
the previous cases, if the multisets of rules are applied in an incorrect order, then the
simulation does not ends with the configuration with the expected form.

Conditional Uniport P Systems with Two Cells 113

The generation simulating the decrement instruction when there is at least one Ai in
the register is as follows.

Symbol [Ai,−1] denotes that the number of elements of multiset [Ai] is decreased
by 1, supposing that [Ai] is a nonempty multiset.

(0, λ)(1, [Ai]p)(2, p1p2p3p4p5p6q)⇒p.1.1 (0, λ)(1, [Ai]pp1)(2, p2p3p4p5p6q)

⇒p.1.2,p.2.2 (0, p1)(1, [Ai]pp2)(2, p3p4p5p6q)⇒p.3.1,p.3.2

(0, pp1)(1, [Ai]p2p3)(2, p4p5p6q)⇒p.4.1,p.4.2 (0, pp1p2)(1, [Ai]p3p4)(2, p5p6q)

⇒p.5.4,p.5.1,p.5.2,p.5.3 (0, p1p2p6)(1, [Ai]XAip3p4p5)(2, pq)⇒p.6.1,p.6.2,p.6.3,p.6.4,p.6.5

(0, p2p3p6)(1, [Ai,−1]p4p5q)(2, XAipp1)⇒p.7.1,p.7.2,p.7.3

(0, p2p5)(1], [Ai,−1]p4q)(2, XAipp1p3p6)⇒p.8.1,p.8.2,p.8.3,p.8.4

(0, λ)(1, [Ai,−1]q)(2, pp1p2p3p4p5p6)

When the register stores zero, i.e. does not contain at least one Ai, then rule
p.6.4 : (0, p6)(1, Ai) → (0, p6)(0, Ai) cannot be performed. Then L-rule p.l.4 :
(0, p6)(2, L) → (0, p6)(0, L) will be performed instead, and an infinite loop will
occur.

The reader can find an example of a complete derivation tree in the appendix, figure
uniport_in_minus_z.

The rule sets above were constructed in such a way that they result in a correct
derivation if and only if they perform the multisets of rules in the described order.
Furthermore, if during the simulation of a transition ofM in Π the simulation of some
transition is started, the generation fails, i.e. ends in an infinite loop. Next, we deal
with the end of a successful computation. Recall that the computation ends inM in the
final configuration (qf , n, 0, . . . , 0), where qf is the final state ofM . The configuration
(qf , n, 0, . . . , 0) ofM corresponds to the configuration (0, λ)(1, qfA1

n)(2, w3q
′
f) ofΠ ,

where w2 = w3q
′
fqf . (Remember, w2 is the content of cell 2 in the initial state ofΠ .) To

have only A1
n in cell 1, we should move qf to cell 2 or to the environment. Let us add

the rule (2, q′f)(1, qf)→ (2, q′f)(2, qf) to the rule set of Π . This rule can be used after
qf appears in cell 1. It can be seen that irrespective of whether this rule is used just after
the occurrence of qf or later (for example, just after the simulation of the instruction of
M ends), we will obtain the halting configuration (0, λ)(1, A1

n)(2, w2).
This implies that N(M) = N(Π), and thus the statement holds.

By invoking the Church-Turing thesis we obtain the following result.

Corollary 2. NOtP2(uin) = NRE.

4 Conclusion

In this paper we considered GCPSs using either the conditional-uniport-in or the
conditional-uniport-out rules. Surprisingly, in the case of conditional-uniport-in we
succeeded to show that only two cells are sufficient for the computational completeness,

114 Erzsébet Csuhaj-Varjú and Sergey Verlan

substantially improving previous results. For the case of only conditional-uniport-out
rules, we proved that there exist k > 0 such that the family of recursively enumerable sets
of natural numbers greater than or equal to k is equal to the family of sets of numbers
generated by GCPSs with only conditional uniport-out rules and only two cells and their
common environment.

We conjecture that computational completeness is not achieved with GCPSs that
contain only one cell and use only one of these two types of rules.

Based on the above two results and the results obtained for some other types of rules
(split, join, etc.), an interesting observation can be made. If the rule applies to k cells
(k = 2, or k =3, or k = 4), then the minimum number of cells required for the universal
computational power is k (plus the environment cell). Such results were obtained for
conditional-uniport-in rules, and for split, join, and chain rules [8]. A similar result
holds for symport2 rules [3,1]. There are no yet such results for presence-move and shift
rules, but we conjecture that the above observation still holds for these cases. We also
conjecture that fewer than this number of cells is not sufficient to achieve computational
completeness.

In the case of Theorem 1, the final configuration contains several additional objects
in the output cell. We conjecture that using a cleaning procedure like in [2] at most 2–3
additional symbols are needed.

These interesting problems are waiting for future research.

References
1. Artiom Alhazov, Maurice Margenstern, Vladimir Rogozhin, Yurii Rogozhin, and Sergey

Verlan. Communicative P systems with minimal cooperation. In Giancarlo Mauri, Gheorghe
Păun, Mario J. Pérez-Jiménez, Grzegorz Rozenberg, and Arto Salomaa, editors, International
Workshop WMC5, Milano, Italy, 2004, LNCS, Springer, 2005, volume 3365 of Lecture Notes
in Computer Science, pages 161–177. Springer, 2005.

2. Artiom Alhazov and Yurii Rogozhin. Skin output in P systems with minimal symport/antiport
and two membranes. In George Eleftherakis, Petros Kefalas, Gheorghe Păun, Grzegorz
Rozenberg, and Arto Salomaa, editors,Membrane Computing, 8th International Workshop,
WMC 2007, Thessaloniki, Greece, June 25-28, 2007 Revised Selected and Invited Papers,
volume 4860 of Lecture Notes in Computer Science, pages 97–112. Springer, 2007.

3. Artiom Alhazov, Yurii Rogozhin, and Sergey Verlan. Minimal cooperation in symport/antiport
tissue P systems. International Journal of Foundations of Computer Science, 18(1):163–180,
2007.

4. Francesco Bernardini, Marian Gheorghe, Maurice Margenstern, and Sergey Verlan. Pro-
ducer/consumer in membrane systems and petri nets. In S. Barry Cooper, Benedikt Löwe,
and Andrea Sorbi, editors, Computation and Logic in the Real World, Third Conference on
Computability in Europe, CiE 2007, Siena, Italy, June 18-23, 2007, Proceedings, volume
4497 of Lecture Notes in Computer Science, pages 43–52. Springer, 2007.

5. Erzsébet Csuhaj-Varjú, György Vaszil, and Sergey Verlan. On generalized communicating P
systems with one symbol. In Marian Gheorghe, Thomas Hinze, Gheorghe Păun, Grzegorz
Rozenberg, and Arto Salomaa, editors,Membrane Computing - 11th International Conference,
CMC 2010, Jena, Germany, August 24-27, 2010. Revised Selected Papers, volume 6501 of
Lecture Notes in Computer Science, pages 160–174. Springer, 2010.

6. Erzsébet Csuhaj-Varjú and Sergey Verlan. On generalized communicating P systems with
minimal interaction rules. Theoretical Computer Science, 412(1-2):124–135, 2011.

Conditional Uniport P Systems with Two Cells 115

7. Erzsébet Csuhaj-Varjú and Sergey Verlan. Bi-simulation between P colonies and P systems
with multi-stable catalysts. In Marian Gheorghe, Grzegorz Rozenberg, Arto Salomaa, and
Claudio Zandron, editors, Membrane Computing - 18th International Conference, CMC 2017,
Bradford, UK, July 25-28, 2017, Revised Selected Papers, volume 10725 of Lecture Notes in
Computer Science, pages 105–117. Springer, 2017.

8. Erzsébet Csuhaj-Varjú and Sergey Verlan. Computationally complete generalized communi-
cating P systems with three cells. In Marian Gheorghe, Grzegorz Rozenberg, Arto Salomaa,
and Claudio Zandron, editors, Membrane Computing - 18th International Conference, CMC
2017, Bradford, UK, July 25-28, 2017, Revised Selected Papers, volume 10725 of Lecture
Notes in Computer Science, pages 118–128. Springer, 2017.

9. Rudolf Freund, Artiom Alhazov, Yurii Rogozhin, and Sergey Verlan. Communication P
systems. In Gh. Păun, G. Rozenberg, and A. Salomaa, editors, The Oxford Handbook of
Membrane Computing, pages 118–143. Oxford University Press, 2009.

10. Rudolf Freund, Ignacio Pérez-Hurtado, Agustín Riscos-Núñez, and Sergey Verlan. A formal-
ization of membrane systems with dynamically evolving structures. International Journal of
Computer Mathematics, 90(4):801–815, 2013.

11. Rudolf Freund and Sergey Verlan. A formal framework for static (tissue) P systems. In George
Eleftherakis, Petros Kefalas, Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa, editors,
Membrane Computing, 8th International Workshop, WMC 2007, Thessaloniki, Greece, June
25-28, 2007 Revised Selected and Invited Papers, volume 4860 of Lecture Notes in Computer
Science, pages 271–284. Springer, 2007.

12. Marvin Minsky. Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, New Jersey,
1967.

13. Andrei Păun and Gheorghe Păun. The power of communication: P systems with symport/an-
tiport. New Gener. Comput., 20(3):295–306, 2002.

14. Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa, editors. The Oxford Handbook of
Membrane Computing. Oxford University Press, Oxford, England, 2010.

15. Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Languages. Springer-
Verlag, Berlin, 1997.

16. Sergey Verlan, Francesco Bernardini, Marian Gheorghe, and Maurice Margenstern. Computa-
tional completeness of tissue P systems with conditional uniport. In Hendrik Jan Hoogeboom,
Gheorghe Paun, Grzegorz Rozenberg, and Arto Salomaa, editors, Membrane Computing, 7th
International Workshop, WMC 2006, Leiden, The Netherlands, July 17-21, 2006, Revised,
Selected, and Invited Papers, volume 4361 of Lecture Notes in Computer Science, pages
521–535. Springer, 2006.

17. Sergey Verlan, Francesco Bernardini, Marian Gheorghe, and Maurice Margenstern. General-
ized communicating P systems. Theoretical Computer Science, 404(1-2):170–184, 2008.

18. Sergey Verlan, Rudolf Freund, Artiom Alhazov, Sergiu Ivanov, and Linqiang Pan. A formal
framework for spiking neural P systems. Journal of Membrane Computing, 2:355–368, 2020.

19. Sergey Verlan and Gexiang Zhang. A tutorial on the formal framework for spiking neural P
systems. Natural Computing, 22(1):181–194, 2023.

116 Erzsébet Csuhaj-Varjú and Sergey Verlan

Appendix

The appendix contains the configuration graph after performing all possible rule appli-
cations. These pictures were automatically computed and generated using a specially
designed simulator. There are the following cases:

– uniport_out_plus — Uniport out, increment instruction
– uniport_out_minus_nz — Uniport out, decrement instruction, register is not empty
– uniport_out_minus_z — Uniport out, decrement instruction, register is empty
– uniport_out_zero_z — Uniport out, zero instruction, register is empty
– uniport_out_zero_nz — Uniport out, zero instruction, register is not empty
– uniport_in_plus — Uniport in, increment instruction
– uniport_in_minus_nz — Uniport in, decrement instruction, register is empty
– uniport_in_minus_z — Uniport in, decrement instruction, register is not empty
– uniport_in_zero_z — Uniport in, zero instruction, register is empty
– uniport_in_zero_nz — Uniport in, zero instruction, register is not empty

uniport_out_plus

(0, [A,4])(1, A p p1 p2 p2')(2, p3 q q') (0, [A,4] p2')(1, A p p1 p2)(2, p3 q q')

(0, [A,4] p2)(1, A p p1 p2')(2, p3 q q')

(0, [A,4])(1, A p p2 p2')(2, p1 p3 q q')

(0, [A,3] p2 p2')(1, A p p1)(2, A p3 q q')

(0, [A,3] p2')(1, A p p2)(2, A p1 p3 q q')

(0, [A,3] p2)(1, A p p2')(2, A p1 p3 q q')

(0, [A,4] p2')(1, A p p2 p3)(2, p1 q q')

(0, [A,4] p2)(1, A p p2' p3)(2, p1 q q')

(0, [A,2] L p2 p2')(1, A p p3)(2, [A,2] p1 q q')

(0, [A,2] p2 p2')(1, A p p1)(2, [A,2] p3 q q')

(0, A L p2 p2')(1, A p)(2, [A,3] p1 p3 q q')

(0, [A,3] p p2')(1, A p2 p3)(2, A p1 q q')

(0, [A,3] p2 p2' p3)(1, A p)(2, A p1 q q')

(0, [A,3] p p2)(1, A p2' p3)(2, A p1 q q')

(0, [A,2] p p2' p3)(1, A L1 p1 p2)(2, [A,2] q q')

(0, [A,2] L p p2' p3)(1, A L1 p2)(2, [A,2] p1 q q')

(0, [A,3] L p p3)(1, A p2)(2, A p1 p2' q q')

(0, [A,3] p p3)(1, A p1 p2)(2, A p2' q q')

(0, A p2 p2')(1, A p p1)(2, [A,3] p3 q q')

(0, [L,2] p2 p2')(1, A p)(2, [A,4] p1 p3 q q')

(0, [A,2] L p p2 p3)(1, A L1 p2')(2, [A,2] p1 q q')

(0, [A,2] p p2 p3)(1, A L1 p1 p2')(2, [A,2] q q')

(0, [A,3] L p p3)(1, A p2')(2, A p1 p2 q q')

(0, [A,3] p p3)(1, A p1 p2')(2, A p2 q q')

(0, [L,3] p2 p2')(1, A p)(2, [A,4] p1 p3 q q')

(0, [A,3] L p3)(1, A p1 p2' q)(2, A p p2 q')

(0, [A,3] p3)(1, [A,2] p1 p2')(2, p p2 q q')

(0, [A,3] [L,2] p)(1, A L1 p1 p2')(2, A p2 p3 q q')

(0, [A,3] p)(1, [A,2] L1 p1 p2')(2, p2 p3 q q')

(0, [A,3] L p)(1, A L1 p1 p2' q)(2, A p2 p3 q')

(0, [A,3] [L,2] p3)(1, A p1 p2')(2, A p p2 q q')

(0, [A,3] [L,2] p3)(1, A p1 p2)(2, A p p2' q q')

(0, [A,3] p3)(1, [A,2] p1 p2)(2, p p2' q q')

(0, [A,3] L p)(1, A L1 p1 p2 q')(2, A p2' p3 q)

(0, [A,3] [L,2] p)(1, A L1 p1 p2)(2, A p2' p3 q q')

(0, [A,3] p)(1, [A,2] L1 p1 p2)(2, p2' p3 q q')

(0, [A,3] L p3)(1, A p1 p2 q')(2, A p p2' q)

(0, [A,3])(1, [A,2] p1 p2' q)(2, p p2 p3 q')

(0, [A,3] L)(1, [A,2] p1 p2')(2, p p2 p3 q q')

(0, [A,3] L)(1, [A,2] p1 p2)(2, p p2' p3 q q')

(0, [A,3])(1, [A,2] p1 p2 q')(2, p p2' p3 q)

(0, [A,3] L)(1, [A,2] p1 p2' q)(2, p p2 p3 q')

(0, [A,3])(1, [A,2] p1 p2 p2' q)(2, p p3 q')

(0, [A,3] L)(1, [A,2] p1 p2 q')(2, p p2' p3 q)

(0, [A,3])(1, [A,2] p1 p2 p2' q')(2, p p3 q)

uniport_out_minus_z

(0,)(1, p p1 p2 p4)(2, p3 q)

(0, p2 p4)(1, p p1)(2, p3 q)

(0, p4)(1, p p2)(2, p1 p3 q)

(0, L2)(1, p p2 p4)(2, p1 p3 q)

(0, L2 p2)(1, p p1 p4)(2, p3 q)

(0, p2)(1, p)(2, p1 p3 p4 q)

(0, p2 p4)(1, L1 p)(2, p1 p3 q)

(0, p2 p4)(1, p p3)(2, p1 q)

(0, L2 p2)(1, p p3)(2, p1 p4 q)

(0, p p2 p4)(1, L1 p3)(2, p1 q)

(0, L2 p2 p4)(1, L1 p p3)(2, p1 q)

(0, p p2)(1, p3)(2, p1 p4 q)

(0, p2)(1, L1 p p3)(2, p1 p4 q)

(0, p2)(1, L1 p p4)(2, p1 p3 q)

(0, L2 p)(1, p3 p4)(2, p1 p2 q)

(0, L2 p p2)(1, L1 p3 p4)(2, p1 q)

uniport_out_minus_nz

(0,)(1, [A,2] p p1 p2 p4)(2, p3 q)

(0, p2 p4)(1, [A,2] p p1)(2, p3 q)

(0, p4)(1, [A,2] p p2)(2, p1 p3 q)

(0, L2)(1, [A,2] p p2 p4)(2, p1 p3 q)

(0, L2 p2)(1, [A,2] p p1 p4)(2, p3 q)

(0, p2)(1, [A,2] p)(2, p1 p3 p4 q)

(0, p2 p4)(1, [A,2] L1 p)(2, p1 p3 q)

(0, p2 p4)(1, [A,2] p p3)(2, p1 q)

(0, p2)(1, [A,2] L1 p p3)(2, p1 p4 q)

(0, p2)(1, [A,2] L1 p p4)(2, p1 p3 q)

(0, L2 p2)(1, [A,2] p p3)(2, p1 p4 q)

(0, p p2 p4)(1, [A,2] L1 p3)(2, p1 q)

(0, A p2 p4)(1, A L1 p p3)(2, p1 q)

(0, L2 p2 p4)(1, [A,2] L1 p p3)(2, p1 q)

(0, p p2)(1, [A,2] p3)(2, p1 p4 q)

(0, A p2)(1, A p p3)(2, p1 p4 q)

(0, L2 p)(1, [A,2] p3 p4)(2, p1 p2 q)

(0, L2 p p2)(1, [A,2] L1 p3 p4)(2, p1 q)

(0, A p p2)(1, A L1 p3 p4)(2, p1 q)

(0, A p)(1, A p3 p4)(2, p1 p2 q)

(0, A L2 p2)(1, A L1 p p3 p4)(2, p1 q)

(0, [A,2] p2)(1, L1 p p3 p4)(2, p1 q)

(0, A [L2,2] p)(1, A p1 p3 p4)(2, p2 q)

(0, A p)(1, A p1 p4)(2, p2 p3 q)

(0, A p)(1, A p4 q)(2, p1 p2 p3)

(0, A [L2,2] p)(1, A p3 p4 q)(2, p1 p2)

(0, [A,2] L2 p)(1, p1 p3 p4)(2, p2 q)

(0, [A,2] L2 p)(1, p3 p4 q)(2, p1 p2)

(0, A L2 p)(1, A p1 p4 q)(2, p2 p3)

(0, A p p4)(1, A p1 q)(2, p2 p3)

(0, A L2 p)(1, A p3 p4 q)(2, p1 p2)

(0, A p4)(1, A p1 q)(2, p p2 p3) (0, A p4)(1, A p1 p2 q)(2, p p3)

uniport_out_zero_z

(0, [CA,4])(1, p p1 p2)(2, p3 q)

(0, [CA,4] p2)(1, p p1)(2, p3 q)

(0, [CA,4])(1, p p2)(2, p1 p3 q)

(0, [CA,3] p2)(1, p)(2, CA p1 p3 q)

(0, [CA,4] p2)(1, p p3)(2, p1 q)

(0, [CA,2] p2)(1, p p1)(2, [CA,2] p3 q)

(0, [CA,2] L p2)(1, p p3)(2, [CA,2] p1 q)

(0, [CA,3] p p2)(1, p3)(2, CA p1 q)

(0, [CA,3] p2 p3)(1, p)(2, CA p1 q)

(0, [CA,2] p p2 p3)(1, L1 p1)(2, [CA,2] q)

(0, [CA,3] p p3)(1, p1)(2, CA p2 q)

(0, [CA,2] L p p2 p3)(1, L1)(2, [CA,2] p1 q)

(0, [CA,3] L p p3)(1,)(2, CA p1 p2 q)

(0, [CA,2] L p2)(1, p)(2, [CA,2] p1 p3 q)

(0, CA [L,2] p2)(1, p)(2, [CA,3] p1 p3 q)

(0, [CA,3] p)(1, CA L1 p1)(2, p2 p3 q)

(0, [CA,3] [L,2] p)(1, L1 p1)(2, CA p2 p3 q)

(0, [CA,3] p3)(1, CA p1)(2, p p2 q)

(0, [CA,3] [L,2] p3)(1, p1)(2, CA p p2 q)

(0, [CA,3] L p)(1, L1 p1 q)(2, CA p2 p3)

(0, [CA,3] L p3)(1, p1 q)(2, CA p p2)

(0, [CA,3] L)(1, CA p1)(2, p p2 p3 q)

(0, [CA,3])(1, CA p1 q)(2, p p2 p3)

(0, [CA,3])(1, CA p1 p2 q)(2, p p3)

(0, [CA,3] L)(1, CA p1 q)(2, p p2 p3)

(0, [CA,4])(1, p1 p2 q)(2, p p3)

uniport_out_zero_nz

(0, [CA,4])(1, [A,2] p p1 p2)(2, p3 q)

(0, [CA,4] p2)(1, [A,2] p p1)(2, p3 q)

(0, [CA,4])(1, [A,2] p p2)(2, p1 p3 q)

(0, [CA,3] p2)(1, [A,2] p)(2, CA p1 p3 q)

(0, [CA,4] p2)(1, [A,2] p p3)(2, p1 q)

(0, [CA,2] p2)(1, [A,2] p p1)(2, [CA,2] p3 q)

(0, [CA,2] L p2)(1, [A,2] p p3)(2, [CA,2] p1 q)

(0, [CA,3] p p2)(1, [A,2] p3)(2, CA p1 q)

(0, [CA,3] p2 p3)(1, [A,2] p)(2, CA p1 q)

(0, CA [L,2] p2)(1, [A,2] p)(2, [CA,3] p1 p3 q)

(0, [CA,2] p p2 p3)(1, [A,2] L1 p1)(2, [CA,2] q)

(0, [CA,3] p p3)(1, [A,2] p1)(2, CA p2 q)

(0, [CA,2] L p p2 p3)(1, [A,2] L1)(2, [CA,2] p1 q)

(0, [CA,3] L p p3)(1, [A,2])(2, CA p1 p2 q)

(0, [CA,2] L p2)(1, [A,2] p)(2, [CA,2] p1 p3 q)

(0, [CA,3] p)(1, [A,2] CA L1 p1)(2, p2 p3 q)

(0, [CA,3] [L,2] p)(1, [A,2] L1 p1)(2, CA p2 p3 q)

(0, [CA,3] p3)(1, [A,2] CA p1)(2, p p2 q)

(0, [CA,3] [L,2] p3)(1, [A,2] p1)(2, CA p p2 q)

(0, [CA,3] L p)(1, [A,2] L1 p1 q)(2, CA p2 p3)

(0, [CA,3] L p3)(1, [A,2] p1 q)(2, CA p p2)

(0, [CA,3])(1, A CA p1 q)(2, A p p2 p3)

(0, [CA,3] L)(1, A CA p1)(2, A p p2 p3 q)

(0, [CA,3] [L,2])(1, CA p1 q)(2, [A,2] p p2 p3)

(0, [CA,3] L)(1, CA p1 p2 q)(2, [A,2] p p3)

uniport_in_plus

(0, [A,4])(1, A p)(2, p1 p2 p3 p4 p5 p6 q q')

(0, [A,4])(1, A p p2)(2, p1 p3 p4 p5 p6 q q')

(0, [A,4])(1, A p p1)(2, p2 p3 p4 p5 p6 q q')

(0, [A,4])(1, A p p1 p2 p3)(2, p4 p5 p6 q q')

(0, [A,4])(1, A L p p1 p2)(2, p3 p4 p5 p6 q q')

(0, [A,4] p1)(1, A p p2)(2, p3 p4 p5 p6 q q')

(0, [A,4] p1)(1, A L p p2 p3 p4)(2, p5 p6 q q')

(0, [A,3] p1)(1, [A,2] L p p2 p3)(2, p4 p5 p6 q q')

(0, [A,4] p1 p4)(1, A p p2 p3)(2, p5 p6 q q')

(0, [A,4] p p1)(1, A p2 p3)(2, p4 p5 p6 q q')

(0, [A,4] p1 p4)(1, A L p p2)(2, p3 p5 p6 q q')

(0, [A,4] p p1)(1, A L p2)(2, p3 p4 p5 p6 q q')

(0, [A,3] L p p1 p4)(1, [A,2] L p2 p3)(2, p5 p6 q q')

(0, [A,3] p1 p4)(1, [A,2] L p2 p3)(2, p p5 p6 q q')

(0, [A,4] p p1 p2)(1, A p3 p4)(2, p5 p6 q q')

(0, [A,3] p p1 p2 p4)(1, [A,2] p3)(2, p5 p6 q q')

(0, [A,4] p1)(1, A L p2 p3 p4)(2, p p5 p6 q q')

(0, [A,4] p1 p2 p3)(1, A p4 p6)(2, p p5 q q')

(0, [A,3] L p1 p2)(1, [A,2] p3 p4 p6)(2, p p5 q q')

(0, [A,4] p1 p2 p3)(1, A p4 p5)(2, p p6 q q')

(0, [A,3] p1 p2 p6)(1, [A,2] p3 p4 p5)(2, p q q')

(0, [A,3] L p1 p2)(1, [A,2] p3 p4 p5)(2, p p6 q q')

(0, [A,2] [L,2] p1 p2 p4)(1, [A,3] p3)(2, p p5 p6 q q')

(0, [A,3] L p1 p2 p3 p4)(1, [A,2])(2, p p5 p6 q q')

(0, [A,2] L p1 p2 p4 p6)(1, [A,3] p3)(2, p p5 q q')

(0, [A,4] [L,2] p2 p4)(1, A L p4 p5 p6)(2, p p1 q q')

(0, [A,4] [L,2] p2 p4)(1, A p4 p5 p6 q')(2, p p1 q)

(0, [A,4] L p2 p4 p5)(1, A p4 p6)(2, p p1 q q')

(0, [A,4] L p2 p4 p6)(1, A p4 p5 q)(2, p p1 q')

(0, [A,4] [L,2] p2 p4)(1, A p4 p5 p6 q)(2, p p1 q')

(0, [A,4] L p2 p4 p6)(1, A p4 p5 q')(2, p p1 q)

(0, [A,2] L p2 p6)(1, [A,3] p3 p4 p5 q)(2, p p1 q')

(0, [A,3] p2 p3 p6)(1, [A,2] p4 p5 q')(2, p p1 q)

(0, [A,2] p2 p5 p6)(1, [A,3] p3 p4)(2, p p1 q q')

(0, [A,2] L p2 p6)(1, [A,3] p3 p4 p5 q')(2, p p1 q)

(0, [A,3] p2 p3 p6)(1, [A,2] p4 p5 q)(2, p p1 q')

(0, [A,3] L p2 p4 p5 p6)(1, [A,2] q')(2, p p1 p4 q)

(0, [A,3] L p2 p6)(1, [A,2] p4 p5 q q')(2, p p1 p3)

(0, [A,3] p2 p5 p6)(1, [A,2] p4 q')(2, p p1 p3 q)

(0, [A,3] [L,2] p2 p4 p6)(1, [A,2] p5 q q')(2, p p1 p4)

(0, [A,2] p2 p3 p6)(1, [A,3])(2, p p1 p4 p5 q q')

(0, A L p2 p6)(1, [A,4] p3)(2, p p1 p4 p5 q q')

(0, [A,3] L p2 p4 p5 p6)(1, [A,2] q)(2, p p1 p4 q')

(0, [A,3] p2 p5 p6)(1, [A,2] p4 q)(2, p p1 p3 q')

(0, [A,3] p6)(1, [A,2] q')(2, p p1 p2 p3 p4 p5 q)

(0, [A,3] L p2 p6)(1, [A,2] q')(2, p p1 p3 p4 p5 q)

(0, [A,2] [L,2] p2 p4 p6)(1, [A,3])(2, p p1 p4 p5 q q')

(0, [A,2] L p2 p6)(1, [A,3])(2, p p1 p3 p4 p5 q q')

(0, [A,3] p6)(1, [A,2] q)(2, p p1 p2 p3 p4 p5 q')

(0, [A,3] L p2 p6)(1, [A,2] q)(2, p p1 p3 p4 p5 q')

(0, [A,3])(1, [A,2] q')(2, p p1 p2 p3 p4 p5 p6 q)

(0, [A,3])(1, [A,2] q)(2, p p1 p2 p3 p4 p5 p6 q')

uniport_in_minus_nz

(0, [XA,2])(1, [A,2] p)(2, p1 p2 p3 p4 p5 p6 q)

(0, [XA,2])(1, [A,2] p p2)(2, p1 p3 p4 p5 p6 q)

(0, [XA,2])(1, [A,2] p p1)(2, p2 p3 p4 p5 p6 q)

(0, [XA,2])(1, [A,2] p p1 p2 p3)(2, p4 p5 p6 q)

(0, [XA,2])(1, [A,2] L p p1 p2)(2, p3 p4 p5 p6 q)

(0, [XA,2] p1)(1, [A,2] p p2)(2, p3 p4 p5 p6 q)

(0, [XA,2] p1)(1, [A,2] L p p2 p3 p4)(2, p5 p6 q)

(0, XA p1)(1, [A,2] L XA p p2 p3)(2, p4 p5 p6 q)

(0, [XA,2] p1 p4)(1, [A,2] p p2 p3)(2, p5 p6 q)

(0, [XA,2] p p1)(1, [A,2] p2 p3)(2, p4 p5 p6 q)

(0, [XA,2] p p1)(1, [A,2] L p2)(2, p3 p4 p5 p6 q)

(0, [XA,2] p1 p4)(1, [A,2] L p p2)(2, p3 p5 p6 q)

(0, L XA p p1 p4)(1, [A,2] L XA p2 p3)(2, p5 p6 q)

(0, [XA,2] p p1 p2)(1, [A,2] p3 p4)(2, p5 p6 q)

(0, XA p1 p4)(1, [A,2] L XA p2 p3)(2, p p5 p6 q)

(0, XA p p1 p2 p4)(1, [A,2] XA p3)(2, p5 p6 q)

(0, [XA,2] p1)(1, [A,2] L p2 p3 p4)(2, p p5 p6 q)

(0, [XA,2] p1 p2 p3)(1, [A,2] p4 p6)(2, p p5 q)

(0, [XA,2] p1 p2 p3)(1, [A,2] p4 p5)(2, p p6 q)

(0, L XA p1 p2)(1, [A,2] XA p3 p4 p6)(2, p p5 q)

(0, XA p1 p2 p6)(1, [A,2] XA p3 p4 p5)(2, p q)

(0, L XA p1 p2)(1, [A,2] XA p3 p4 p5)(2, p p6 q)

(0, [L,2] p1 p2 p4)(1, [A,2] XA p3)(2, XA p p5 p6 q)

(0, L XA p1 p2 p3 p4)(1, [A,2])(2, XA p p5 p6 q)

(0, L p1 p2 p4 p6)(1, [A,2] XA p3)(2, XA p p5 q)

(0, [L,2] [XA,2] p2 p4)(1, [A,2] L p4 p5 p6)(2, p p1 q)

(0, L [XA,2] p2 p4 p6)(1, [A,2] p4 p5 q)(2, p p1)

(0, L [XA,2] p2 p4 p5)(1, [A,2] p4 p6)(2, p p1 q)

(0, [L,2] [XA,2] p2 p4)(1, [A,2] p4 p5 p6 q)(2, p p1)

(0, A p2 p5 p6)(1, A XA p3 p4)(2, XA p p1 q)

(0, L p2 p5 p6)(1, [A,2] XA p3 p4)(2, XA p p1 q)

(0, A L p2 p6)(1, A XA p3 p4 p5 q)(2, XA p p1)

(0, L XA p2 p3 p6)(1, [A,2] p4 p5 q)(2, XA p p1)

(0, A XA p2 p3 p6)(1, A p4 p5 q)(2, XA p p1)

(0, [L,2] p2 p6)(1, [A,2] XA p3 p4 p5 q)(2, XA p p1)

(0, A [L,2] XA p2 p6)(1, A p3)(2, XA p p1 p4 p5 q)

(0, A L p2)(1, A p3)(2, [XA,2] p p1 p4 p5 p6 q)

(0, A p2 p3)(1, A)(2, [XA,2] p p1 p4 p5 p6 q)

(0, [A,2] XA p2 p3 p6)(1,)(2, XA p p1 p4 p5 q)

(0, A L XA p2 p3 p6)(1, A)(2, XA p p1 p4 p5 q)

(0, [A,2] L XA p2 p6)(1, p3)(2, XA p p1 p4 p5 q)

(0, A L XA p2)(1, A p4 p5 q)(2, XA p p1 p3 p6)

(0, A [L,2] [XA,2] p2 p4 p5 p6)(1, A q)(2, p p1 p4)

(0, [A,2] L [XA,2] p2 p4 p5 p6)(1, q)(2, p p1 p4)

(0, A [L,2] [XA,2] p2 p6)(1, A p4 p5 q)(2, p p1 p3)

(0, A XA p2 p5)(1, A p4 q)(2, XA p p1 p3 p6)

(0, [A,2] [L,2] [XA,2] p2 p4 p6)(1, p5 q)(2, p p1 p4)

(0, [A,2] L [XA,2] p2 p6)(1, p4 p5 q)(2, p p1 p3)

(0, A L [XA,2] p2 p5 p6)(1, A p4 q)(2, p p1 p3)

(0, A [L,2] XA p2 p4)(1, A p5 q)(2, XA p p1 p4 p6)

(0, A L XA p2 p4 p5)(1, A q)(2, XA p p1 p4 p6)

(0, [A,2] [XA,2] p2 p5 p6)(1, p4 q)(2, p p1 p3)

(0, A [L,3] [XA,2] p2 p4 p6)(1, A p5 q)(2, p p1 p4)

(0, A [XA,2])(1, A p4 p6 q)(2, p p1 p2 p3 p5)

(0, A L [XA,2] p2)(1, A p4 p6 q)(2, p p1 p3 p5)

(0, A [XA,2] p2 p6)(1, A q)(2, p p1 p3 p4 p5)

(0, A L [XA,2] p2)(1, A q)(2, p p1 p3 p4 p5 p6)

(0, A [XA,2])(1, A q)(2, p p1 p2 p3 p4 p5 p6)

(0, [A,2] L [XA,2] p6)(1, q)(2, p p1 p2 p3 p4 p5)

(0, [A,2] [L,2] [XA,2] p2 p6)(1, q)(2, p p1 p3 p4 p5)

(0, A [L,2] [XA,2] p2 p4)(1, A)(2, p p1 p4 p5 p6 q)

(0, A L [XA,2] p2 p4 p6)(1, A)(2, p p1 p4 p5 q)

(0, A [XA,2] p2 p6)(1, A)(2, p p1 p3 p4 p5 q)

(0, A L [XA,2] p2)(1, A)(2, p p1 p3 p4 p5 p6 q)

(0, [A,2] [L,3] [XA,2] p2 p4 p6)(1,)(2, p p1 p4 p5 q)

(0, [A,2] [L,2] XA p2 p4)(1,)(2, XA p p1 p4 p5 p6 q)

(0, [A,2] [L,2] [XA,2] p2 p6)(1,)(2, p p1 p3 p4 p5 q)

(0, [A,2] L XA p2)(1,)(2, XA p p1 p3 p4 p5 p6 q)

(0, A L [XA,2] p6)(1, A)(2, p p1 p2 p3 p4 p5 q)

(0, A [L,2] [XA,2] p2 p6)(1, A)(2, p p1 p3 p4 p5 q)

(0, [A,2] [XA,2] p6)(1,)(2, p p1 p2 p3 p4 p5 q)

(0, [A,2] L [XA,2] p2 p6)(1,)(2, p p1 p3 p4 p5 q)

(0, A [XA,2])(1, A L p6 q)(2, p p1 p2 p3 p4 p5)

(0, A [XA,2])(1, A L p4 p5 p6 q)(2, p p1 p2 p3)

(0, A L [XA,2] p6)(1, A q)(2, p p1 p2 p3 p4 p5)

(0, A [L,2] [XA,2] p2 p6)(1, A q)(2, p p1 p3 p4 p5)

(0, [A,2] [XA,2] p6)(1, q)(2, p p1 p2 p3 p4 p5)

(0, [A,2] L [XA,2] p2 p6)(1, q)(2, p p1 p3 p4 p5)

(0, [A,2] L [XA,2] p6)(1,)(2, p p1 p2 p3 p4 p5 q)

uniport_in_minus_z

(0, [XA,2])(1, p)(2, p1 p2 p3 p4 p5 p6 q)

(0, [XA,2])(1, p p2)(2, p1 p3 p4 p5 p6 q)

(0, [XA,2])(1, p p1)(2, p2 p3 p4 p5 p6 q)

(0, [XA,2])(1, p p1 p2 p3)(2, p4 p5 p6 q)

(0, [XA,2])(1, L p p1 p2)(2, p3 p4 p5 p6 q)

(0, [XA,2] p1)(1, p p2)(2, p3 p4 p5 p6 q)

(0, [XA,2] p1)(1, L p p2 p3 p4)(2, p5 p6 q)

(0, XA p1)(1, L XA p p2 p3)(2, p4 p5 p6 q)

(0, [XA,2] p1 p4)(1, p p2 p3)(2, p5 p6 q)

(0, [XA,2] p p1)(1, p2 p3)(2, p4 p5 p6 q)

(0, [XA,2] p p1)(1, L p2)(2, p3 p4 p5 p6 q)

(0, [XA,2] p1 p4)(1, L p p2)(2, p3 p5 p6 q)

(0, L XA p p1 p4)(1, L XA p2 p3)(2, p5 p6 q)

(0, [XA,2] p p1 p2)(1, p3 p4)(2, p5 p6 q)

(0, XA p1 p4)(1, L XA p2 p3)(2, p p5 p6 q)

(0, XA p p1 p2 p4)(1, XA p3)(2, p5 p6 q)

(0, [XA,2] p1)(1, L p2 p3 p4)(2, p p5 p6 q)

(0, [XA,2] p1 p2 p3)(1, p4 p6)(2, p p5 q)

(0, [XA,2] p1 p2 p3)(1, p4 p5)(2, p p6 q)

(0, L XA p1 p2)(1, XA p3 p4 p6)(2, p p5 q)

(0, XA p1 p2 p6)(1, XA p3 p4 p5)(2, p q)

(0, L XA p1 p2)(1, XA p3 p4 p5)(2, p p6 q)

(0, [L,2] p1 p2 p4)(1, XA p3)(2, XA p p5 p6 q)

(0, L XA p1 p2 p3 p4)(1,)(2, XA p p5 p6 q)

(0, L p1 p2 p4 p6)(1, XA p3)(2, XA p p5 q)

(0, [L,2] [XA,2] p2 p4)(1, L p4 p5 p6)(2, p p1 q)

(0, L [XA,2] p2 p4 p6)(1, p4 p5 q)(2, p p1)

(0, L [XA,2] p2 p4 p5)(1, p4 p6)(2, p p1 q)

(0, [L,2] [XA,2] p2 p4)(1, p4 p5 p6 q)(2, p p1)

(0, L XA p2 p3 p6)(1, p4 p5 q)(2, XA p p1)

(0, L p2 p5 p6)(1, XA p3 p4)(2, XA p p1 q)

(0, [L,2] p2 p6)(1, XA p3 p4 p5 q)(2, XA p p1)

uniport_in_zero_z

(0, [CA,2])(1, p)(2, p1 p2 p3 p4 p5 p6 q)

(0, [CA,2])(1, p p2)(2, p1 p3 p4 p5 p6 q)

(0, [CA,2])(1, p p1)(2, p2 p3 p4 p5 p6 q)

(0, [CA,2])(1, L p p1 p2)(2, p3 p4 p5 p6 q)

(0, [CA,2])(1, p p1 p2 p3)(2, p4 p5 p6 q)

(0, [CA,2] p1)(1, p p2)(2, p3 p4 p5 p6 q)

(0, [CA,2] p1 p4)(1, p p2 p3)(2, p5 p6 q)

(0, [CA,2] p p1)(1, p2 p3)(2, p4 p5 p6 q)

(0, [CA,2] p p1)(1, L p2)(2, p3 p4 p5 p6 q)

(0, [CA,2] p1 p4)(1, L p p2)(2, p3 p5 p6 q)

(0, [CA,2] p1)(1, L p p2 p3 p4)(2, p5 p6 q)

(0, CA p1)(1, CA L p p2 p3)(2, p4 p5 p6 q) (0, CA L p p1 p4)(1, CA L p2 p3)(2, p5 p6 q)

(0, [CA,2] p1)(1, L p2 p3 p4)(2, p p5 p6 q)

(0, [CA,2] p p1 p2)(1, p3 p4)(2, p5 p6 q)

(0, CA p1 p4)(1, CA L p2 p3)(2, p p5 p6 q)

(0, CA p p1 p2 p4)(1, CA p3)(2, p5 p6 q)

(0, CA L p1 p2)(1, CA p3 p4 p5)(2, p p6 q)

(0, [CA,2] p1 p2 p3)(1, p4 p6)(2, p p5 q)

(0, [CA,2] p1 p2 p3)(1, p4 p5)(2, p p6 q)

(0, CA p1 p2 p6)(1, CA p3 p4 p5)(2, p q)

(0, CA L p1 p2)(1, CA p3 p4 p6)(2, p p5 q)

(0, CA L p1 p2 p3 p4)(1,)(2, CA p p5 p6 q)

(0, [L,2] p1 p2 p4)(1, CA p3)(2, CA p p5 p6 q)

(0, L p1 p2 p4 p6)(1, CA p3)(2, CA p p5 q)

(0, [CA,2] [L,2] p2 p4)(1, L p4 p5 p6)(2, p p1 q)

(0, [CA,2] L p2 p4 p6)(1, p4 p5 q)(2, p p1)

(0, [CA,2] L p2 p4 p5)(1, p4 p6)(2, p p1 q)

(0, [CA,2] [L,2] p2 p4)(1, p4 p5 p6 q)(2, p p1)

(0, CA p2 p3 p6)(1, p4 p5 q)(2, CA p p1)

(0, p2 p5 p6)(1, CA p3 p4)(2, CA p p1 q)

(0, L p2 p6)(1, CA p3 p4 p5 q)(2, CA p p1)

(0, CA L p2 p4 p5 p6)(1, q)(2, CA p p1 p4)

(0, CA L p2 p6)(1, p4 p5 q)(2, CA p p1 p3)

(0, CA [L,2] p2 p4 p6)(1, p5 q)(2, CA p p1 p4)

(0, CA p2 p5 p6)(1, p4 q)(2, CA p p1 p3)

(0, L p2 p3 p5 p6)(1,)(2, [CA,2] p p1 p4 q)

(0, CA p2 p3 p5 p6)(1,)(2, CA p p1 p4 q)

(0, [L,2] p2 p5 p6)(1, p3)(2, [CA,2] p p1 p4 q)

(0, CA L p2 p5 p6)(1, p3)(2, CA p p1 p4 q)

(0, [CA,2] L p2 p5 p6)(1, q)(2, p p1 p3 p4)

(0, CA L p5 p6)(1, q)(2, CA p p1 p2 p3 p4)

(0, CA [L,2] p2 p5 p6)(1, q)(2, CA p p1 p3 p4)

(0, [CA,2] p5 p6)(1, q)(2, p p1 p2 p3 p4)

(0, CA [L,3] p2 p4 p5 p6)(1,)(2, CA p p1 p4 q)

(0, [CA,2] [L,2] p2 p4 p5 p6)(1,)(2, p p1 p4 q)

(0, CA [L,2] p2 p5 p6)(1,)(2, CA p p1 p3 p4 q)

(0, CA [L,2] p2 p4 p6)(1,)(2, CA p p1 p4 p5 q)

(0, CA L p2 p6)(1,)(2, CA p p1 p3 p4 p5 q)

(0, [CA,2] L p2 p5 p6)(1,)(2, p p1 p3 p4 q)

(0, [CA,2] L p5)(1, q)(2, p p1 p2 p3 p4 p6)

(0, [CA,2])(1, q)(2, p p1 p2 p3 p4 p5 p6)

uniport_in_zero_nz

(0, [CA,2])(1, [A,2] p)(2, p1 p2 p3 p4 p5 p6 q)

(0, [CA,2])(1, [A,2] p p2)(2, p1 p3 p4 p5 p6 q)

(0, [CA,2])(1, [A,2] p p1)(2, p2 p3 p4 p5 p6 q)

(0, [CA,2])(1, [A,2] L p p1 p2)(2, p3 p4 p5 p6 q)

(0, [CA,2])(1, [A,2] p p1 p2 p3)(2, p4 p5 p6 q)

(0, [CA,2] p1)(1, [A,2] p p2)(2, p3 p4 p5 p6 q)

(0, [CA,2] p1)(1, [A,2] L p p2 p3 p4)(2, p5 p6 q)

(0, CA p1)(1, [A,2] CA L p p2 p3)(2, p4 p5 p6 q)

(0, [CA,2] p1 p4)(1, [A,2] p p2 p3)(2, p5 p6 q)

(0, [CA,2] p p1)(1, [A,2] p2 p3)(2, p4 p5 p6 q)

(0, [CA,2] p p1)(1, [A,2] L p2)(2, p3 p4 p5 p6 q)

(0, [CA,2] p1 p4)(1, [A,2] L p p2)(2, p3 p5 p6 q)

(0, CA L p p1 p4)(1, [A,2] CA L p2 p3)(2, p5 p6 q)

(0, [CA,2] p1)(1, [A,2] L p2 p3 p4)(2, p p5 p6 q)

(0, [CA,2] p p1 p2)(1, [A,2] p3 p4)(2, p5 p6 q)

(0, CA p1 p4)(1, [A,2] CA L p2 p3)(2, p p5 p6 q)

(0, CA p p1 p2 p4)(1, [A,2] CA p3)(2, p5 p6 q)

(0, CA L p1 p2)(1, [A,2] CA p3 p4 p5)(2, p p6 q)

(0, [CA,2] p1 p2 p3)(1, [A,2] p4 p6)(2, p p5 q)

(0, [CA,2] p1 p2 p3)(1, [A,2] p4 p5)(2, p p6 q)

(0, CA p1 p2 p6)(1, [A,2] CA p3 p4 p5)(2, p q)

(0, CA L p1 p2)(1, [A,2] CA p3 p4 p6)(2, p p5 q)

(0, CA L p1 p2 p3 p4)(1, [A,2])(2, CA p p5 p6 q)

(0, [L,2] p1 p2 p4)(1, [A,2] CA p3)(2, CA p p5 p6 q)

(0, L p1 p2 p4 p6)(1, [A,2] CA p3)(2, CA p p5 q)

(0, [CA,2] [L,2] p2 p4)(1, [A,2] L p4 p5 p6)(2, p p1 q)

(0, [CA,2] L p2 p4 p6)(1, [A,2] p4 p5 q)(2, p p1)

(0, [CA,2] L p2 p4 p5)(1, [A,2] p4 p6)(2, p p1 q)

(0, [CA,2] [L,2] p2 p4)(1, [A,2] p4 p5 p6 q)(2, p p1)

(0, CA p2 p3 p6)(1, [A,2] p4 p5 q)(2, CA p p1)

(0, p2 p5 p6)(1, [A,2] CA p3 p4)(2, CA p p1 q)

(0, L p2 p6)(1, [A,2] CA p3 p4 p5 q)(2, CA p p1)

(0, CA [L,2] p2 p4 p6)(1, A p5 q)(2, A CA p p1 p4)

(0, CA L p2 p6)(1, A p4 p5 q)(2, A CA p p1 p3)

(0, CA p2 p5 p6)(1, A p4 q)(2, A CA p p1 p3)

(0, CA L p2 p4 p5 p6)(1, A q)(2, A CA p p1 p4)

(0, L p2 p3 p5 p6)(1, A)(2, A [CA,2] p p1 p4 q)

(0, CA p2 p3 p5 p6)(1, [A,2])(2, CA p p1 p4 q)

(0, CA L p2 p5 p6)(1, [A,2] p3)(2, CA p p1 p4 q)

(0, [L,2] p2 p5 p6)(1, A p3)(2, A [CA,2] p p1 p4 q)

(0, CA L p5 p6)(1, q)(2, A CA L1 p p1 p2 p3 p4)

(0, [CA,2] L p2 p5 p6)(1, A q)(2, L1 p p1 p3 p4)

(0, CA [L,2] p2 p5 p6)(1, q)(2, A CA L1 p p1 p3 p4)

(0, [CA,2] p5 p6)(1, A q)(2, L1 p p1 p2 p3 p4)

(0, CA L p2 p6)(1, A)(2, A CA p p1 p3 p4 p5 q)

(0, CA [L,3] p2 p4 p5 p6)(1, A)(2, A CA p p1 p4 q)

(0, CA [L,2] p2 p5 p6)(1, A)(2, A CA p p1 p3 p4 q)

(0, CA [L,2] p2 p4 p6)(1, A)(2, A CA p p1 p4 p5 q)

(0, [CA,2] [L,2] p2 p4 p5 p6)(1, [A,2])(2, p p1 p4 q)

(0, [CA,2] L p2 p5 p6)(1, [A,2])(2, p p1 p3 p4 q)

Simple Variants of Non-cooperative Polymorphic P
Systems

Anna Kuczik and György Vaszil

Faculty of Informatics, University of Debrecen
Kassai út 26, 4028 Debrecen, Hungary
kuczik.anna@inf.unideb.hu
vaszil.gyorgy@inf.unideb.hu

Abstract. We investigate the computational power of non-cooperative polymor-
phic P systems with no additional ingredients. The variants we study are even more
simple in the sense that the sets of possible right-hand sides of the dynamically
changing rules are finite. We show that systems with this type of restriction
characterize exactly the class of Parikh sets of ET0L languages.

Keywords: P systems with dynamic rules, Polymorphic P systems, P systems with
non-cooperative rules, P systems with limited depth, Parikh sets of ET0L languages

1 Introduction

Polymorphic P systems were introduced in [1] motivated by the idea that the program of
a computing device could be viewed as data, therefore, it could also be changed during
the course of the computation. In these types of P systems, rules are not statically defined,
but are dynamically inferred from the contents of pairs of membranes: The contents of
one member of the pair define the multiset representing the left-hand side of the rule, the
contents of the other member define the right-hand side. As the membranes can contain
further membranes, the contents of the pairs, and this way the left- and right-hand sides
of rules may change dynamically during the computation.

The initial results presented in [1] show the power of the model. With cooperative
rules (rules with left-hand sides with more than one object) any recursively enumerable
set of numbers can be generated, but non-cooperative systems (systems with rules with
just one object on the left-hand side) can also generate several interesting languages,
mainly based on the fact that exponential, even super-exponential growth of the number
of objects inside the system can be produced.

The study of non-cooperative variants of the model was continued further in [3]
by considering the case of “no ingredients”, that is, when no special features (not even
target indicators) are added to the system. The equivalence of so called strong and
weak polymorphism was shown, left polymorphism, right polymorphism, and general
polymorphism was defined. As its main contribution, [3] presented a hierarchy of
computational power based on the depth of the membrane structure, but in general, the
computational capabilities of the non-cooperative variant remained unclear.

128 Anna Kuczik and György Vaszil

In the present work, we intend to take some additional steps in this direction. We
show that (1) Parikh sets of ET0L languages can be generated using non-cooperative
polymorphic P systems (with no other ingredients) of depth three where all non-
dynamical rules are “chain rules”, and that (2) ET0L systems can generate string
languages corresponding to the multiset languages of non-cooperative polymorphic P
system where the set of the possible contents of regions corresponding to right-hand
sides of rules is finite. This gives us an exact characterization of the class of Parikh sets
of ET0L languages in terms of restricted variants of non-cooperative polymorphic P
systems.

In the following we first review the necessary definitions, then present an example
where a simple ET0L system is simulated, then finally generalize the idea of the simulation
to a method for generating any ET0L language.

2 Preliminaries

In the following we briefly define the basic notions we will use. See [6] for more on
formal language theory, and [4,5] for details about membrane computing.

An alphabet V is a finite non-empty set of symbols called letters. A string (or word)
over V is a finite sequence of letters, the set of all strings over V (the free monoid
generated by V) is denoted by V ∗, and V + = V ∗ \ {λ} where λ denotes the empty
string. For a string w ∈ V ∗, we denote by |w|x the number of occurrences of the letter
x ∈ V in w. If we fix an order V = {a1, a2, . . . , an} of the letters, then the vector
(|w|a1 , |w|a2 , . . . , |w|an) is called the Parikh vector of the word w ∈ V ∗.

Multisets are sets with multiplicities associated with their elements. If N denotes
the set of nonnegative integers, then a multiset over a set U is a mappingM : U → N
where M(a), for all a ∈ U , is the multiplicity of element a in the multiset M . If
U is finite, U = {a1, a2, . . . an}, then M can also be represented by a string w =

a
M(a1)
1 a

M(a2)
2 . . . a

M(an)
n (and all permutations of this string) where aj denotes the

string obtained by concatenating j ∈ N occurrences of the letter a ∈ V (with a0 = λ).
Lindenmayer systems (or L systems) are parallel rewriting systems. In the following,

we will use the variants which are extended, tabled, and interactionless, that is, ET0L
systems in short.

An ET0L system is a construct G = (V, T, U,w) where V is an alphabet, T ⊆ V is
a terminal alphabet, w ∈ V + is the initial word of G, and U = (P1, . . . , Pm) where
Pi, 1 ≤ i ≤ m, are finite sets of context-free productions over V (called tables), such
that for each a ∈ V , there is at least one rule a → α, α ∈ V ∗ in each table. In a
computational step inG, all the symbols of the current sentential form are rewritten using
one of the tables of U . The language generated byG consists of all terminal strings which
can be generated in a series of computational steps (a derivation) starting from the initial
word, that is, L(G) = {u ∈ T ∗ | w ⇒∗ u} where⇒ denotes a computational step, and
⇒∗ is the reflexive and transitive closure of⇒. The family of languages generated by
ET0L systems is denoted by L(ET0L).

It is known (see [2], for example) that for each ET0L system with an arbitrary number
of tables, there exists an ET0L system with only two tables generating the very same
language. This means that every task which can be solved by an arbitrary ET0L system

Simple Variants of Non-cooperative Polymorphic P Systems 129

can also be solved by a system using two tables. Therefore, in the following we will
usually assume that ET0L systems have two tables.

Moreover, since we are going to relate ET0L languages to the multiset languages of P
systems, we are not interested in the string generated by the ET0L system as a sequence
of letters, but only in the multiplicities of different letters, that is, in the Parikh vectors of
the generated strings. We will denote by Ps(G) the set of Parikh vectors corresponding
the strings of L(G) (also called the Parikh set of L(G)), and by PsET0L the class of
Parikh sets corresponding to the class of languages generated by ET0L systems.

Polymorphic membrane systems were introduced in [1]. Unlike in traditional mem-
brane systems, the rules rules in polymorphic P systems are not fixed in advance, but
they are defined by the contents of specific membrane regions corresponding to the left-
and right-hand sides of the rule.

A polymorphic P system is a tuple

Π = (O, T, µ, ws, 〈w1L, w1R〉 , . . . , 〈wnL, wnR〉 , ho),

where O is the alphabet of objects, T ⊆ O is the set of terminal objects, µ is the
membrane structure consisting of 2n+ 1 membranes labelled by a symbol from the set
H = {s, 1L, 1R, . . . , nL, nR}, the elements of the multiset ws are the initial contents
of the skin membrane, the pairs of multisets 〈wiL, wiR〉 correspond to the initial contents
of membranes iL and iR, 1 ≤ i ≤ n, and ho ∈ H is the label of the output membrane.

The membrane structure is usually denoted by a string of labelled and matching
parentheses, but it can also be represented by a tree with its root labelled by the label of
the outermost membrane, and the descendant nodes of each node labelled by the labels
of membranes enclosed by the region corresponding to the given node. In the following,
the number of nodes encountered during the traversal of the longest path from the root to
a leaf in such a tree representation will be called the depth of the membrane system. (For
example, the system which only has one membrane is of depth 1, while the system with
two nested membranes is of depth 2.) Note that for every 1 ≤ i ≤ n, the membranes iL
and iR have the same parent membrane, so they are located at the same depth.

The rules ofΠ are not given statically in the description, but are dynamically deduced
for each configuration based on the content of the membrane pairs iL and iR, 1 ≤ i ≤ n.
Thus, if in the configuration of the system these membranes contain the multisets u and
v, then in the next step their parent membrane is transformed as if the u→ v multiset
rewriting rule were added to it.

If there is at least one rule in a system Π where the number of objects in u (the
multiset on the left-hand side) can grow to be greater than one, then we say that Π is a
cooperative system, otherwise, it is a non-cooperative system. If iL is empty for some
1 ≤ i ≤ n in a configuration, then the rule defined by the pair iL, iR is considered
disabled, that is, no rule will be inferred from the contents of iL and iR for use in the
next computational step.

A computation of the system is a series of computational steps in which the rules
associated to a given region are applied in a maximally parallel way, that is, as many
rules have to be applied in parallel as possible (with the restriction that each object can
be rewritten by at most one rule). A P system halts (reaches a halting configuration)
when no more computational steps are possible, that is, when no rule can be applied in
any of the regions.

130 Anna Kuczik and György Vaszil

Fig. 1: The polymorphic P system Π1 of Example 1.

The set of vectors N(Π) generated by a P system Π with the terminal alphabet
T ⊆ O is the set of Parikh vectors of the strings w ∈ T ∗ corresponding to the multisets
of the terminal objects appearing in the output region ho in a halting configuration of Π
which is reached by a computation starting in the initial configuration of the system.

Similarly to [1], we denote non-cooperative polymorphic membrane systems and their
languages as NOP k(polym, ncoo) and L(NOP k(polym, ncoo)) where k denotes the
depth, polym means polymorphism, and ncoo means that the system is non-cooperative.

Now we recall an example of a simple polymorphic membrane system with superex-
ponential growth from [1].

Example 1. Consider the polymorphic P system

Π1 = ({a}, {a}, µ, a, 〈a, a〉 , 〈a, aa〉 , s)

with membrane structure µ = [[]1L [[]2L []2R]1R]s as illustrated in Figure 1.
In the initial configuration, the rule corresponding to the contents of 1L, 1R (rule 1)

is a → a, and it will be applied in the skin region. The rule corresponding to 2L, 2R
(rule 2) is a→ aa, and it will be applied in region 1R. In the first step, rule 1 is applied in
the skin leaving the contents of the membrane intact, and rule 2 is applied in membrane
1R doubling the number of a’s, so rule 1 (the rule corresponding to 1L, 1R) will be
changed to a→ aa. In the second step, rule 1 will transform the multiset a in the skin
into aa, and rule 2 will double the contents of region 1R again, so after this step, rule 1
becomes a→ a4. In general, after k derivation steps, the contents of 1R will be a2k, so
rule 1 will have the form a→ a2

k. As the number of a’s in the skin will be 2
k(k−1)

2 , the
rate of growth of the contents of the skin membrane is superexponential.

3 Polymorphic P systems with limited depth

In this section we would like to examine the relationship of languages generated by
ET0L systems and simple polymorphic P systems, where simplicity is captured by
non-cooperation and limited depth. We look at an example first.

Example 2. Consider the following ET0L system G = (V, T, U,w) with V = T =
{a1, a2}, w = a1a2, and two tables U = (P1, P2), each containing two rules

Simple Variants of Non-cooperative Polymorphic P Systems 131

Fig. 2: The P system Π of Example 2.

P1 = {a1 → a1a2, a2 → a2a1a1}, and
P2 = {a1 → a2, a2 → a1}.

We construct a non-cooperative polymorphic P system Π with depth 3 that can
perform the choosing between rules of P1 and P2, and therefore simulates the operation
of G.

Let O = {a1, a2, a′1, a′2, a01, a02, a11, a12, ā1, ā2, ¯̄a1, ¯̄a2, b, c, d, }, T ′ = {a′1, a′2} and

Π2 = (O, T ′, µ, ws, 〈w1L, w1R〉, . . . , 〈w21L, w21R〉, s)

where the membrane structure of Π2 is such that the skin membrane directly contains
the membranes 1L, 1R, 14L, 14R, . . . , 21L.21R, and the rest of the membranes are
contained by 1L and 1R. In more detail, µ is defined as

µ = [[. . .]1L [. . .]1R []14L []14R . . . []21L []21R]s

where membrane 1L contains the inner membranes []2L []2R . . . []6L []6R, and
membrane 1R contains the inner membranes []7L []7R . . . []13L []13R.

The graphical representation of µ can be seen in Figure 2 where also the initial
membrane contents are depicted. Non-dynamical rules, that is, pairs of membranes
[wiL]iL, [wiR]iR with constant contents (contents that never change during the
computation) are given in a simplified notation as wiL → wiR. Note that in this example
we only have one rule that changes dynamically, rule 1 (the rule corresponding to the
regions 1L, 1R), the other rules have the same form at each step of the computation.

132 Anna Kuczik and György Vaszil

The initial contents of the regions with non-constant contents are

ws = a′1a
′
2, w1L = b, w1R = b,

the initial multisets contained by the rest of the regions are given (using the simplified
notation) in Figure 2.

Step Rule 1 Contents Rule Rule Rules used
of the Skin used in 1L used in 1R in the Skin

1. b→ b a′1a
′
2 2 7

2. a′1 → ā1 a′1a
′
2 3 8

3. a′2 → ā2 ā1a
′
2 4 9 14

4. c→ c a11a
1
2ā2 5 13 16, 18, 20

5. b→ b a01a
0
2a

0
2a

0
1a

0
1 2 7 or 10 19, 21

6. a′1 → ā1 or
a′1 → ¯̄a1

a′1a
′
2a
′
2a
′
1a
′
1

Table 1: The polymorphic system Π2 of example 2

The functioning of Π2 is demonstrated in Table 1. The first column contains the
step number, the second column shows the form of rule 1 (defined by the membranes
1L, 1R) after every step, the third column contains the objects in the skin region, while
the fourth, fifth, and sixth columns contain the rules we (need to) use in the corresponding
computational steps.

The general idea behind the functioning of Π2 is as follows. Rules 14− 17 simulate
the rewriting process of the tables of G. Those with left-hand side ā1 or ā2 simulate
the first table, those with left-hand side ¯̄a1, ¯̄a2 simulate the second table. The objects
of the skin region correspond to the sentential form of G. Rule 1 is “dynamic”, it
prepares the objects of the skin membrane for the application of the rules 14− 17 in the
appropriate order. At the beginning of a “simulating cycle”, rule 1 is used to rewrite a1
(more precisely, its variant, a′1) to ā1 or ¯̄a1 selecting this way the table to be simulated.
Then, rule 1 changes to rewrite a′2 according to the same selection while rules 14− 17
proceed with the actual simulation of the chosen table. The rest of the rules are needed
to synchronize the whole process.

Table 1 shows how the rewriting of a1a2 to a1a2a2a1a1 by the first table of G is
simulated in Π2. In the initial state, the form of rule 1 is b→ b which is not applicable
because we only have objects a′1, a′2 in the skin region, so we have to change rule 1 in the
first step.

In 1L we can use rule 2 (b → a′1) which rewrites b in 1L to a′1 making rule 1
applicable. In parallel, we have to use rule 7 (b → ā1) or rule 10 (b → ¯̄a1) in 1R
depending on the table of the ET0L system we want to simulate. To simulate P1, we
must use rule 7, to simulate P2, we must use rule 10. As we would like to simulate P1,
we use rule 7.

Simple Variants of Non-cooperative Polymorphic P Systems 133

As can be seen in the second row of Table 1, the form of rule 1 has changed, and now
we can use it in the skin region to rewrite a′1 to ā1. At the same time, the rules used in
1L and 1R (a′1 → a′2, ā1 → ā2, respectively) change the form of rule 1 to a′2 → ā2 in
order to be able to start rewriting a′2-s in the next step.

After we have used rule 1 and the objects in the skin region have changed, we can use
rule 14 (ā1 → a11a

1
2) which simulates the first rule from the table P1 of G. The upper

indexing of the symbols on the right-hand side starts from 1, and it will decrease in each
of the following steps until the symbols are written back into the original primed form
(after counting down with the indices to zero) at the appropriate step, that is, at the step
when the rewriting of the other symbol, a′2 is also finished.

Meanwhile, in step 3, rule 1 (a′2 → ā2) is also applied to rewrite a′2 (so the second
rule of table P1 of G can also be simulated), and rule 1 is changed to c→ c (so it cannot
be applied in the next step).

In the next step, with rule 16 (ā2 → a02a
0
1a

0
1), the rule a2 → a2a1a1 (the second rule

of P1) is simulated, while rules 18 and 20 decrement the upper indices of the objects
introduced by the simulation of the previous rule, and the form of rule 1 is changed to
b→ b.

Now, as can be seen in row 5 of Table 1, the system is ready to prepare the next
simulating cycle by rewriting the objects corresponding to the sentential form of G to
their original primed versions, and changing rule 1 in the appropriate way. We can return
to a state that is similar to the initial state by choosing between rule 7 and rule 10 again
(to simulate another step from the ET0L system), and in parallel, by rewriting a01-s and
a02-s to a′1-s and a′2-s with rules 19 and 21.

The simulation of the ET0L system can be stopped at the steps which precede the
table selection phase of the simulation. If both 1L and 1R contains the object b and we
want to stop the simulating process, we can choose rule 6 instead of rules 7 or 10. Rule 6
shuts down the system and the simulation ends. The reason for this is that after applying
rule 6, the form of rule 1 is d→ ā1 or d→ ¯̄a1, none of which is applicable in the skin
membrane (as no d objects can ever be present there).

The result of the computation of Π2 is a multiset over T ′ = {a′1, a′2} in the skin
membrane (the output membrane of the system) which corresponds to the Parikh set of a
string that can be generated by the ET0L system G.

Now we show how the idea presented in the example above can be generalized to
arbitrary ET0L systems.

Theorem 1. PsET0L ⊆ L(NOP 3(polym, ncoo)).

Proof. LetG = (V, T, U,w) be an ET0L system, let k denote the number of letters in the
alphabet, V = {a1, a2, ..., ak}, and let T = {a1, . . . , al} ⊆ V for some l ≤ k. Without
loss of generality, we assume thatG has exactly two tables, U = (P1, P2). We denote the
jth rule of table 1 and table 2 (and their left- and right-hand sides) as αi,j → βi,j , where
αi,j ∈ V and βi,j ∈ V ∗, 1 ≤ i ≤ 2, 1 ≤ j ≤ m. In order to simplify the notation, we
assume that the cardinality of the two tables are the same, m = |P1| = |P2|. If this is
not the case, then α1,j → β1,j for |P1| < j ≤ |P2| (or α2,j → β2,j for |P2| < j ≤ |P1|)
will denote the same rule as α1,1 → β1,1 (or α2,1 → β2,1).

134 Anna Kuczik and György Vaszil

Let

O = {a′i, ani , āi, ¯̄ai, ¯̄̄ai | 1 ≤ i, n ≤ k} ∪ {ai | 1 ≤ i ≤ l} ∪ {b, c, d},
T = {ai | 1 ≤ i ≤ l},

and let
Π = (O, T, µ, ws, 〈w1L, w1R〉, . . . , 〈wpL, wpR〉, s)

where p = 1 + (3k + 6) + 2m + k2 and the membrane structure of Π is such that
the skin region directly contains the membranes with labels 1L, 1R and iL, iR for
(3k+ 8) ≤ i ≤ p, while the rest of the membranes are contained by 1L and 1R. In more
detail, µ is defined as

µ = [[. . .]1L [. . .]1R [](3k+8)L [](3k+8)R . . . []pL []pR]s

with membrane 1L containing the membranes []2L []2R . . . [](k+4)L [](k+4)R, and
membrane 1R containing the membranes [](k+5)L [](k+5)R . . . [](3k+7)L [](3k+7)R.

In 1L, the number of rules depends on the number of letters in the alphabet of the
ET0L system, we have to apply k+ 2 rules for each table simulation in succession (where
k = |V |). In general, we specify the rules for the k letters as

r2 : b→ a′1, ri+2 : a′i → a′i+1, for 1 ≤ i ≤ k − 1, and rk+2 : a′k → c, rk+3 : c→ b.

These rules perform the same task as the rules of 1L in Example 2 do for two letters. In
order to be able to finish the simulation we also need the additional rule rk+4 : b→ d
(see the end of the proof for more details).

Note that here we have used the simplified notation again for membranes with
contents that remain constant for the whole computation. (Without this simplification
we would have to write 〈w2L, w2R〉 and specify w2L = b, w2R = a′1 instead of the rule
r2 : b→ a′1, for example.)

Rules must be applied in 1R depending on the choice of the table, so we have to
create rules for also P1 and P2. We need the rules

rk+5 : b→ ā1, rk+5+i : āi → āi+1 for 1 ≤ i ≤ k − 1, r2k+5 : āk → c,

to enable the simulation of P1, the rules

r2k+6 : b→ ¯̄a1, r2k+6+i : ¯̄ai → ¯̄ai+1 for 1 ≤ i ≤ k − 1, r3k+6 : ¯̄ak → c,

for P2, and one more rule r3k+7 : c→ b to finish the process.
To finish the simulation, we need to be able to stop the functioning of Π in the

case when the skin region contains (primed variants of) terminal letters only, that is,
objects only from the set {a′1, . . . , a′l} = {a′ | a ∈ T}. In order to do this, we introduce
a mechanism that is similar to the simulation of the tables. To 1R we add the rules

r3k+8 : b→ ¯̄̄a1, r3k+8+i : ¯̄̄ai → ¯̄̄ai+1 for 1 ≤ i ≤ k − 1, r4k+8 : ¯̄̄ak → d.

In the skin region, we go through the objects of the alphabet applying the rules of the
chosen table to each of them in a sequence, the rules for the occurrences of one specific

Simple Variants of Non-cooperative Polymorphic P Systems 135

object at a time. For this reason, use indexed variants of the symbols which are produced
in the intermediate steps, so they are able to “wait” until the rules for the rest of the
objects are also applied. To achieve this effect, we add extra rules decreasing the indices
in such a way that we get back to the primed form a′1, a

′
2, . . . , a

′
k for all objects at the

same computational step.
Recall our assumption that |P1| = |P2| = m, and that we denote the jth rule of table

i ∈ {1, 2} as αi,j → βi,j , where αi,j ∈ V and βi,j ∈ V ∗, 1 ≤ j ≤ m. In the following
we will use the notation βli,j for some 1 ≤ l ≤ k to express that βli,j ∈ {al1, al2, . . . , alk}∗
is the indexed version of the corresponding string βi,j ∈ {a1, a2, . . . , ak}∗.

Now we add the following rules to the skin region. To simulate the rules of P1 we
need

r4k+8+j : āi → βk+1−i
1,j for each rule α1,j → β1,j ∈ P1

where α1,j = ai for some ai ∈ {a1, a2, . . . ak} and 1 ≤ j ≤ m.
For the simulation of P2 we have

r4k+8+m+j : ¯̄ai → βk+1−i
2,j for each rule α2,j → β2,j ∈ P2

where α2,j = ai for some ai ∈ {a1, a2, . . . ak} and 1 ≤ j ≤ m.
After rewriting with the rules above, we have to use rules to count down with the

indices of the objects that were produced until the last element of the alphabet is rewritten
(similarly to the way we count down in the example). To achieve this, we need

r4k+8+2m+(i−1)k+n : ani → an−1i for 2 ≤ n ≤ k, and

r4k+8+2m+(i−1)k+1 : a1i → a
′

i.

In order to stop the system, we use the rules

r4k+8+2m+k2+i : ¯̄̄ai → δi where δi = ai if ai ∈ T or δi = F if ai 6∈ T,

for 1 ≤ i ≤ k in the skin region. If the multiset in the skin region corresponding to
the current sentential form of the simulated ET0L system contains primed versions of
terminal only, that is, elements of the set {a′1, . . . , a′l}, then these rules rewrite them to
terminal objects. Otherwise, if nonterminal objects are present (that is, if the simulation
should not be stopped), they introduce the nonterminal F which prevents the halting of
the system because the rule

r5k+8+2m+k2+1 : F → F

is also present in the skin region.
To stop the system entirely, we also need to apply the rule rk+4 : b→ d of 1L. After

we used this rule (and no F object is present in the skin region), the system shuts down
because we never have d object in the skin region, and there are no rules applicable to d
in 1L, 1R, or to the terminal objects in the skin region.

When Π halts, the result is a multiset over T = {a1, a2, . . . , al} which corresponds
to a terminal string that can be generated by the ET0L system G.

To see that the P system Π cannot produce multsets that do not correspond to the
Parikh set of a string generated by the ET0L system, observe the construction of Π .

136 Anna Kuczik and György Vaszil

Fig. 3: The polymorphic P system Π3 of Example 3.

Informally speaking, there are just a few points where the rule application in Π is not
deterministic (apart from simulating the possibility when one symbol can be rewritten
by more than one rule of the ET0L system). These nondeterministic steps involve the
choice of the table of G to be simulated and the choice whether to finish or to continue
the computation, so we might conclude that the behavior of the P system corresponds to
an ET0L system derivation.

4 Polymorphic P systems with finite sets of instances of dynamic
rules

Since there is no communication between the regions (as we consider P systems with
“no ingredients”), the sequence of multisets appearing inside a given region as the
computation proceeds only depends on the initial contents of the region itself. To
formalize this idea, we introduce a successor relation defined on the contents of regions.

Let Π = (O, T, µ, ws, 〈w1L, w1R〉, . . . , 〈wnL, wnR〉, ho) be a polymorphic P sys-
tem, and let wh for some h ∈ {s, 1L, 1R, . . . , nL, nR} denote the multiset contained
by the region labelled by h after the jth step of the computation of Π for some j ≥ 0.
We say that w′h is in the successor set of wh, denoted as w′h ∈ σj,h(wh), if w′h can be
obtained from wh by the maximally parallel applications of the multiset rewriting rules
associated to the region h, as can be deduced from the configuration of Π which is
reached in the jth step of the computation.

If for the same wh as above, we fix σ0
j,h(wh) = wh for any j ≥ 0, and for k ≥ 0 we

have σk+1
j,h = σj+k,h(σkj,h(wh)), then we can define

σ∗j,h =
⋃
k≥0

σkj,h(wh).

Definition 1. Given a polymorphic P systemΠ as above, we say that a region h ofΠ is
finitely representable or FIN-representable in short, if the set of successor multisets of
the initial contents of h, wh, is finite, that is, σ∗0,h(wh) is finite.

First we demonstrate the notion of FIN-representability on an example.

Simple Variants of Non-cooperative Polymorphic P Systems 137

Example 3. Consider the polymorphic P system

Π3 = (O, T, µ, ws, 〈w1L, w1R〉, . . . , 〈w9L, w9R〉, s)

where O = T = {a, b, c}, and the membrane structure is µ = [[. . .]1L [. . .]1R]s, where
the child membranes of 1L are []2L []2R . . . []5L []5R and the children of 1R are
[]6L []6R . . . []9L []9R. Let

ws = a, w1L = a, w1R = aa,

and using the simplified notation for static rules, let the rules corresponding to 1L be

r2 : a→ c, r3 : a→ b, r4 : b→ a, r5 : c→ b,

and the rules corresponding to 1R be

r6 : a→ b, r7 : b→ a, r8 : b→ c, r9 : c→ b,

as can also be seen in Figure 3.
In the following we show that both 1L and 1R are FIN-representable. Concerning

1L, observe that σ∗0,1L(a) = {a, b, c} with σ0,1L(a) = σj,1L(a) = {b, c}, σ0,1L(b) =
σj,1L(b) = {a}, and σ0,1L(c) = σj,1L(c) = {b} for all j ≥ 0, which can be represented
with the graph in Figure 4a.

Considering 1R, we have σ0,1R(aa) = σj,1R(aa) = σ0,1R(cc) = σj,1R(cc) =
σ0,1R(ac) = σj,1R(ac) = {bb}, and σ0,1R(bb) = σj,1R(bb) = {aa, cc, ac}, thus,
σ∗0,1R(aa) = {aa, bb, cc, ac}, as can be seen on Figure 4b.

The skin region is not FIN-representable, as the dynamical rule r1 given by the
membranes labelled with 1L and 1R has more than one symbol on its right-hand side in
each computational step, which means that the number of symbols in the skin region is
increasing with each rule application.

Initially, r1 : a → aa, so σ0,s(a) = {aa}. Then r1 ∈ {c → bb, b → bb},
so it is not applicable, σ2

0,s(a) = σ1,s(aa) = {aa}. Then r1 ∈ {b → aa, b →
ac, b → cc, a → aa, a → ac, a → cc}, thus, σ3

0,s(a) = σ2
2,s(aa) = σ3,s(aa) =

{aaaa, aacc, aaac, cccc, ccac, acac}. As we see, the multiplicity of objects in the skin
region keeps increasing, so this region cannot be FIN-representable according to Defini-
tion 1.

Given a non-cooperative polymorphic system as defined above, left-hand sides of
rules have at most one symbol, so the membranes with labels iL, 1 ≤ i ≤ n, are
always FIN-representable. However, the situation is different in the case of membranes
iR, 1 ≤ i ≤ n. If at least one of the rules which is applicable (an arbitrary number of
computational steps) during a computation inside some right-hand side membrane has
more than one symbol on its right-hand side, then the corresponding dynamic rule has
arbitrary many possible instances, and the region corresponding to its right-hand side
cannot be FIN-representable. In general, any region with at least one applicable rule
having more than one object on its right-hand side is not FIN-representable.

Let us denote by NOP (polym1, ncoo, fin) the class of non-cooperative polymor-
phicmembrane systems of degree 2n+1where all right-hand side regions, iR, 1 ≤ i ≤ n,

138 Anna Kuczik and György Vaszil

a

b

c

(a) region 1L

bb

ac

cc

aa

(b) region 1R

Fig. 4: Graphical demonstration the possible membrane contents of the P system of
Example 3 with arrows indicating the initial contents and the successor relation between
the multisets (which are given by their string representations).

are FIN-representable, and the skin region contains at most one rule that is non-constant
(or dynamic), and let L(NOP (polym1, ncoo, fin)) denote the languages that they
generate. We can state the following theorem.

Theorem 2. L(NOP (polym1, ncoo, fin)) ⊆ PsET0L.

Proof sketch. Let Π = (O, T, µ, ws, 〈w1L, w1R〉, . . . , 〈wnL, wnR〉, s) be a polymor-
phic P system, Π ∈ NOP (polym1, ncoo, fin), and let us assume (without loss of
generality) that the membranes that are directly contained in the skin region are labelled
by the labels 1L, 1R, . . . , kL, kR, k ≤ n, with 1L, 1R having non-constant contents.

Since both the left- and right-hand membranes 1L, 1R are FIN-representable, we
can construct all possible sequences of rules that can be described by their contents in
the particular steps of any possible sequence of computation steps that Π can perform.

Let us denote the rule w1L → w1R described in the initial configuration by the
first pair of membranes by r1 : α1 → β1. Now consider the rule set Rσ(1) = {u →
v | u ∈ σ0,1L(w1L), v ∈ σ0,1R(w1R)}, and let us denote its elements by r11 : α11 →
β11, . . . , r1m : α1m → β1m for m = |Rσ(1)|. Now consider a rule r1j ∈ Rσ(1), let
Rσ(1j) = {u → v | u ∈ σ1,1L(α1j), v ∈ σ1,1R(β1j)}, and let us denote the elements
of Rσ(1j) by r1j1 : α1j1 → β1j1, . . . , r1jl : α1jl → β1jl for l = |Rσ(1j)|.

Continuing this procedure, we get all possible rule sequences that is ever described
by the membrane pair 1L, 1R during all possible computations performed by Π . Since
both membranes are FIN-representable, all such sequences sooner or later produce
r1 : α1 → β1 (or w1L → w1R in the original notation), after which one of the other
possible sequences are produced again.

Since all other rules corresponding to the skin membrane are constant, we can
simulate the rewriting process with the tables of an ET0L system by including the rules
corresponding to the skin membrane in different computational steps in different tables
and making sure that these tables are applied in the order in which the instances of the
dynamical rule appear in the above described sequences. This can be achieved by adding
an extra nonterminal letter to the sentential forms of the ET0L system which can be
labelled with different labels corresponding to different tables, and adding extra rules for

Simple Variants of Non-cooperative Polymorphic P Systems 139

each table that either relabels this symbol for a table that should be applied in the next
step, or introduces a trap symbol if the application of the “wrong” table is attempted.

If a configuration is halting, then no rule can be applied to the objects. This can also
be checked by special tables which eliminate the special labelled nonterminal while
introducing the trap symbol if there are letters present to which rules could be applied.

Corollary 1. L(NOP (polym1, ncoo, fin)) = PsET0L.

Proof. By observing the proof of Theorem 1, we may see that for any ET0L system
G, the right-hand regions of the P system Π ∈ NOP 3(polym, ncoo) constructed to
simulate G are FIN-representable, and the skin region contains exactly one dynamic rule.
Combining this observation with Theorem 2 we obtain our statement.

Example 4. Consider the polymorphic P system of Example 3 which can be seen in
Figure 3. Let us construct an ET0L system G = (V, T ′, U, w) simulating this membrane
system. The nonterminal alphabet of G includes O, a set of labelled symbols, and the
trap symbol,

V ⊇ {d1, d11, d12, d111, d112, d113, d121, d122, d123, d1121, d1122, d1131,
d1132, d1211, d1212, d12111, d12112, d12113, d12114, d12115, d12116,

d12121, d12122, d12123, d12124, d12125, d12126, d12141, F}.

The terminals correspond to the terminal objects of the P system, T ′ = {a′, b′, c′}.
At the beginning, we construct the first table which contains the current instance of

rule r1, the relabelling rules, and additional rules for identical rewriting of b, c (because
ET0L systems rewrite every symbol at every step) which we do not indicate in the tables
below, for the sake of brevity. The construction of the relabelling rules is based on the
number of different configurations that can be obtained after the next computational step.
Since there are two possible configurations that the P system can reach, the symbol d1
can be relabelled in two ways, either to d11 or d12.

P1 = {d1 → dx, dy → F | x ∈ {11, 12}, y 6= 1} ∪ {a→ aa}.

Possibly applicable tables following the first step can be constructed from table P1.
At the first step, in 1L, rule r2 : a→ c or rule r3 : a→ b is applied. Depending on this
choice, the content of 1L change and thus rule r1. For this reason, the ET0L system has
to choose between two options, so two tables have to be constructed for it. One table
will be valid if rule r2 is applied in the first step, the other table will be valid if rule r3 is
applied in the first step. In 1R, rule r6 : a→ b is applied, so the right-hand side of rule
r1 changes to b. Moreover, since the number of configurations reachable by the next step
is six (see the discussion in the next paragraph below the tables), the labelling of the d
symbol can be extended in six possible ways,

P1,1 = {d11 → d11x, dy → F | x ∈ {1, 2, 3}, y 6= 11} ∪ {b→ bb},
P1,2 = {d12 → d12x, dy → F | x ∈ {1, 2, 3}, y 6= 12} ∪ {c→ bb}.

Now we construct the tables which can follow P1,1. Two rules can be applied in 1R
in the membrane system, rule r7 : b→ a and rule r8 : b→ c. Depending on this choice,

140 Anna Kuczik and György Vaszil

the right-hand side of rule r1 can be aa or cc or ac. Since the left-hand side of the rule
can be an a symbol (due to rule r4) three new tables have to be constructed from P1,1,
each demonstrating a possible rule application.

P1,1,1 = {d111 → dx, dy → F | x ∈ {11, 12}, y 6= 111} ∪ {a→ aa},
P1,1,2 = {d112 → d112x, dy → F | x ∈ {1, 2}, y 6= 112} ∪ {a→ cc},
P1,1,3 = {d113 → d113x, dy → F | x ∈ {1, 2}, y 6= 113} ∪ {a→ ac}.

Table P1,1,1 is similar to table P1, therefore we don’t need to build the tables further on
this branch, we can go back to the level of P1. Because of this, it can be seen that the
label of d does not increase here, but changes to the same label as in P1. The other two
tables do not have similar “parents”, so these branches must be continued.

Similarly, three new tables can be constructed from P1,2 using rule r5 to rewrite the
left-hand side c to b.

P1,2,1 = {d121 → d1211, dy → F | y 6= 121} ∪ {b→ aa},
P1,2,2 = {d122 → d1221, dy → F | y 6= 122} ∪ {b→ cc},
P1,2,3 = {d123 → d1231, dy → F | y 6= 123} ∪ {b→ ac}.

Now we continue with table P1,1,2. Two tables are created from P1,1,2 after the
previous step.

P1,1,2,1 = {d1121 → dx, dy → F | x ∈ {121, 122, 123}, y 6= 1121} ∪ {c→ bb},
P1,1,2,2 = {d1122 → dx, dy → F | x ∈ {111, 112, 113}, y 6= 1122} ∪ {b→ bb}.

Table P1,1,2,1 is similar to table P1,2, therefore we don’t need to build the tables further
on this branch, just as in the case of table P1,1,2,2 which is similar to P1,1.

Continuing with table P1,1,3, two tables are created.

P1,1,3,1 = {d1131 → dx, dy → F | x ∈ {121, 122, 123}, y 6= 1131} ∪ {c→ bb},
P1,1,3,2 = {d1132 → dx, dy → F | x ∈ {111, 112, 113}, y 6= 1132} ∪ {b→ bb}.

Table P1,1,3,1 and P1,1,3,2 are similar to table P1,2 and P1,1, therefore we don’t need to
build the tables further on this branch.

For tables P1,2,1 , P1,2,2 and P1,2,3 , we need to continue all of them. It is an
interesting case that when any of the three tables are applied, the same table result from
each of them (this was reflected in the labels introduced).

P1,2,1,1 = {d1211 → d1211x, dy → F | x ∈ {1, 2, . . . , 6}, y 6= 1211} ∪ {a→ bb}.

From P1,2,1,1 we have to construct six new tables, three of these already appear in the
previous steps, so those branches are closed in the tree (these are the first three tables),
the other three have to be continued.

P1,2,1,1,1 = {d12111 → d1211, dy → F | y 6= 12111} ∪ {b→ aa},
P1,2,1,1,2 = {d12112 → d1221, dy → F | y 6= 12112} ∪ {b→ cc},
P1,2,1,1,3 = {d12113 → d1231, dy → F | y 6= 12113} ∪ {b→ ac},
P1,2,1,1,4 = {d12114 → d121141, dy → F | y 6= 12114} ∪ {c→ aa},

Simple Variants of Non-cooperative Polymorphic P Systems 141

Fig. 5: The graph structure representing the order in which the tables constructed in
Example 4 can be applied.

P1,2,1,1,5 = {d12115 → dx, dy → F | x ∈ {121141}, y 6= 12115} ∪ {c→ cc},
P1,2,1,1,6 = {d12116 → dx, dy → F | x ∈ {121141}, y 6= 12116} ∪ {c→ ac}.

There are only three tables left after the previous step that we still need to continue,
these are P1,2,1,1,4, P1,2,1,1,5, and P1,2,1,1,6. An interesting case occurs here as well, just
like after step 3. All three tables will be followed by the same table (which is similar to
P1,1), so we can finish creating the tables on this branch as well.

P1,2,1,1,4,1 = {d121141 → dx, dy → F | x ∈ {111, 112, 113}, y 6= 121141} ∪
{b→ bb}.

Figure 5 shows a graph which is based on the order in which the application of the
tables constructed above can be applied. Nodes with no outgoing edges correspond to
tables that are similar to another one which is already present in the graph.

All the objects in the P system of Example 3 are terminal, but the rules are constructed
in such a way that the computations never halt, so they never produce any result at all.

142 Anna Kuczik and György Vaszil

If we add the rule b→ e for the new object e (which cannot be further rewritten), then
the computation could halt by applying the new rule. This means that all configurations
where e is present in 1L are halting. To incorporate this feature in the simulating ET0L
system, we need to follow a similar construction as above, but all tables that contain a
rule with e on the left-hand side should be followed by a “finishing” table that identically
rewrites a, b, c, but erases the marked nonterminals from the string.

5 Conclusion

We have shown how ET0L systems can be simulated by restricted variants of non-
cooperative polymorphic P system of depth three, then showed that the simulation
also works the other way around, so a precise characterization of Parikh sets of ET0L
languages can be obtained in term of polymorphic P systems. Our work is intended
to be an initial step in the investigation of the computing power of non-cooperative
polymorphic systems with limited depth or FIN-representable regions.

References

1. Artiom Alhazov, Sergiu Ivanov, and Yurii Rogozhin. Polymorphic P systems. In Marian
Gheorghe, Thomas Hinze, Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa, editors,
Membrane Computing, volume 6501 of Lecture Notes in Computer Science, pages 81–94,
Berlin, Heidelberg, 2011. Springer-Verlag.

2. Andrzej Ehrenfeucht, Grzegorz Rozenberg, and Sven Skyum. A relationship between ET0L
and EDT0L languages. Theoretical Computer Science, 1(4):325–330, 1976.

3. Sergiu Ivanov. Polymorphic P systems with non-cooperative rules and no ingredients. In
Marian Gheorghe, Grzegorz Rozenberg, Arto Salomaa, Petr Sosík, and Claudio Zandron,
editors, Membrane Computing, volume 8961 of Lecture Notes in Computer Science, pages
258–273, Cham, 2014. Springer International Publishing.

4. Gheorghe Păun. Membrane Computing: An Introduction. Springer-Verlag, Berlin, Heidelberg,
2002.

5. Gheorghe Păun, Grzegorz Rozenberg, and Aarto Salomaa, editors. The Oxford Handbook of
Membrane Computing. Oxford University Press, Oxford, 2010.

6. Grzegorz Rozenberg and Aarto Salomaa, editors. Handbook of Formal Languages. Springer-
Verlag, Berlin Heidelberg, 1997.

Randomly walking with PDP systems

David Orellana-Martín1,2[0000−0002−2892−6775], José A.
Andreu-Guzmán1[0000−0002−4109−7641], Carmen Graciani1,2[0000−0002−3887−3494],

Agustín Riscos-Núñez1,2[0000−0002−5409−3578], and Mario J.
Pérez-Jiménez1,2[0000−0002−5055−0102]

1 Research Group on Natural Computing, Department of Computer Science and Artificial
Intelligence, Universidad de Sevilla, Avda. Reina Mercedes, s/n, 41012, Seville, Spain

{dorellana, jandreu, cgdiaz, ariscosn, marper}@us.es
2 SCORE Laboratory, I3US, Universidad de Sevilla, Avda. Reina Mercedes, s/n, 41012, Seville

Spain

Abstract. PDP systems have been widely used for real-life applications, such as
systems biology, ecosystems, physics or economy, among others. Complex systems
related with these areas are simulated in the framework of membrane computing
by using objects and membranes that can represent entities or places in the real-life
process. In physics, the study of a particle in different fluids, depending on their
composition, is really interesting for several applications. A first approximation to
this field is to think that particles move randomly in the available space, without any
force that constrain their movements. This behaviour is known as random walk, and
it is used not only in physics but in economics, genetics and ecology among other
areas. In this paper, we introduce generic PDP systems for simulating the behaviour
of particles, both for one-dimensional spaces and for two-dimensional spaces,
using different simulators to analyze the computational resources consumed.

Keywords: Membrane Computing · PDP systems · Modelling · Random walk.

1 Introduction

Membrane Computing is a bio-inspired paradigm based on the structure and behavior
of living cells. It was first introduced in [12], trying to give an alternative perspective
to fields such as formal language theory and computability theory. The main devices
within this framework are the so-called P systems. Several kinds of these systems have
been defined, some of them are explained in [13,14]. Apart from theoretical results, such
as computational completeness and efficiency, a wide range of applications have been
found by specific types of P systems. As some of them can be found in [9,11,16], we
want to stress the impact of probabilistic-like systems, called PDP systems, in the field
of ecosystems. From the first successful implementation of a model for the endangered
species Gypaetus barbatus, or bearded vultures, in the Pyrenean and Prepyrenean
mountains of Catalonia [7], passing through the Pyrenean chamois [5] and the zebra
mussel [8] in the fluvial reservoir of Riba-roja, to the Giant Panda conservation in
China [16], it has been proved that this framework is plausible for the simulation of
real-life processes. In fact, in [1,2], two simple models are defined to simulate two

144 D. Orellana-Martín et al.

classical physics problems such as the Stern-Gerlach experiment and the Uranium 238
decay. Some tools have been developed in order to simulate and validate these models,
such as P-Lingua [17], MeCoSim [18] as well as some GPU based simulators in the
PMCGPU project [19]. In this work, we want to prove the usefulness of these kinds of
systems in the simulation of the dynamics of particles moving in a free manner. The paper
is organized as follows: in the next section, some references of PDP systems are given. In
Sections 3 and 4, two different models for one-dimensional and two-dimensional spaces
are introduced. Next, we introduce some tools to graph the behaviour of particles in the
space and to show a comparative of the time spent in the computations depending on
the size of the space and the number of particles. The work will be closed with some
conclusions and open research lines.

2 PDP systems

PDP systems are a variant of P systems inspired by the functioning of cells. Cells are
able to run multiple processes in parallel in a perfectly synchronized manner, making
them good candidates to be imitated for modeling complex problems. A PDP system can
be viewed as a cellular tissue in which each cell is within a special compartment called
environment. The cells have a particular structure hierarchy in which there is a skin
membrane that defines and distinguishes the inside from the outside. In turn, inside a cell
there are a number of hierarchically arranged membranes, where organelles or chemical
substances capable of evolving according to specific reactions of the membrane may
appear. PDP systems are probabilistic P systems, that is, the applications of their rules is
commanded by a predefined probability on them. For a more exhaustive explanation of
this model, see [6].

The key of software implementations of these systems are conflicts. If two or more
rules compete for a resource, the algorithm has to take a strategy. The resolution of
conflicts depends on the algorithm used to simulate the system. Some algorithms as
the Binomial Block Based simulation algorithm (BBB) [3], the Direct Non Deterministic
distribution with Probabilities algorithm (DNDP) [5] and the Direct distribution based on
Consistent Blocks Algorithm (DCBA) [10] have been developed, each of them treating these
conflicts in a different way. Thus, the state of the system at any time step is determined
by the state of the system at the previous time step.

3 The one-dimensional model

In this model, particles going in a one-dimensional space are simulated. In this sense,
particles have only two movements options: either going to the left or going to the right.
Since the PDP system studied has a single environment and it is not used, we are going
to define directly the behaviour of the P system under study. Let N be the number of
particles simulated, and n0 the space available. The corresponding P system is a tuple

Π = (Γ, µ,M1,R),

where:

Randomly walking with PDP systems 145

1. Γ = {ei | 0 ≤ i ≤ N − 1} ∪ {ai,j | 0 ≤ i ≤ N − 1, 0 ≤ j ≤ n0 − 1};
2. µ = []1;
3. M1 = {ei | 0 ≤ i ≤ N − 1};
4. The setR contains the following rules:

Objects ei do not directly represent the particles, but they will be generated in the first
step. In this case, the particles are generated in the one-dimensional space. We situate
all the particles in the centre of the space. Object ai,j will represent that particle i
will be present in the point j. The first subscript is very useful for identifying the
particle from other particles in the same system. It can be used, for instance, for
graphically describing the movement of the particle. Particles are not generated
directly in the initial configuration since it will be useful for future research to be
able to generate from the initial objects a different number of particles or to put them
in a specific point of the space.
[ei → ai,j]1 for 0 ≤ i ≤ N − 1, j = bn0/2c
From the second configuration, we simulate the random movement of the particle.
Particles have two possible actions: either they move to the left or they move to the
right. Since the extreme points of the space are limits and they are not joint with
each other, there are two exceptions to this rule: when a particle is at the leftmost
point or at the rightmost point. In these cases, the only option for the particle is to go
to the right or to the left, respectively.
[ai,j]1

1/2→ [ai,j+1]1

[ai,j]1
1/2→ [ai,j−1]1

}
for
{

0 ≤ i ≤ N − 1
1 ≤ j ≤ n0 − 2

[ai,n0−1 → ai,n0−2]1
[ai,0 → ai,1]1

}
for 0 ≤ i ≤ N − 1

4 The two-dimensional model

In this model, the behaviour of a free movement of particles in a two-dimensional space
is simulated. We simulate a two-dimensional space with “walls”; that is, particles cannot
pass through the limits of the space. Let N be the number of particles simulated. Let n0
and n1 be the space available in the x axis and in the y axis, respectively; that is, if a
particle is situated in the (i, j) coordinate, 0 ≤ i ≤ n0 − 1 and 0 ≤ j ≤ n1 − 1. The
corresponding P system is a tuple

Π = (Γ, µ,M1,R),

where:

1. Γ = {ei | 0 ≤ i ≤ N − 1} ∪
{ai,j,k | 0 ≤ i ≤ N − 1, 0 ≤ j ≤ n0 − 1, 0 ≤ j ≤ n0 − 1};

2. µ = []1;
3. M1 = {ei | 0 ≤ i ≤ N − 1};
4. The setR contains the following rules:

Objects ei will be transformed into objects ai,j,k in the first computational step. As
in the one-dimensional case, we situate all the particles in the centre of the space.

146 D. Orellana-Martín et al.

Object ai,j,k will represent that particle i will be present in the point (j, k). It is
interesting to keep the position as subscripts for having the possibility of creating
higher-dimensional spaces with the same structure. Particles are not generated
directly in the initial configuration since it will be useful for future research to be
able to generate from the initial objects a different number of particles or to put them
in a specific point of the space.
[ei → ai,j,k]1 for 0 ≤ i ≤ N − 1, j = bn0/2c, k = bn1/2c
From this point, the free movement of the particles will be simulated. In this case,
instead of having two different actions, particles can move in two dimensions; that is,
they have four possible actions (they are not able to move diagonally). There exist
two exceptions to this rule are the following: First, when a particle is situated in an
edge of the space. In this case, either they move in one of the two directions still
being in the edge or they move in perpendicular directions to the edge (3 possible
actions). Last, when a particle is situated in a corner of the space. In this case, it has
the option to go to each of the edges that finish at that corner (2 possible options).
[ai,j,k]1

1/4→ [ai,j−1,k]1

[ai,j,k]1
1/4→ [ai,j,k+1]1

[ai,j,k]1
1/4→ [ai,j+1,k]1

[ai,j,k]1
1/4→ [ai,j,k−1]1


for

0 ≤ i ≤ N − 1
1 ≤ j ≤ n0 − 2
1 ≤ k ≤ n1 − 2

[ai,j,0]1
1/3→ [ai,j−1,0]1

[ai,j,0]1
1/3→ [ai,j,1]1

[ai,j,0]1
1/3→ [ai,j+1,0]1

 for
{

0 ≤ i ≤ N − 1
1 ≤ j ≤ n0 − 2

[ai,j,n1−1]1
1/3→ [ai,j−1,n1−1]1

[ai,j,n1−1]1
1/3→ [ai,j+1,n1−1]1

[ai,j,n1−1]1
1/3→ [ai,j,n1−2]1

 for
{

0 ≤ i ≤ N − 1
1 ≤ j ≤ n0 − 2

[ai,n0−1,k]1
1/3→ [ai,n0−2,k]1

[ai,n0−1,k]1
1/3→ [ai,n0−1,k+1]1

[ai,n0−1,k]1
1/3→ [ai,n0−1,k−1]1

 for
{

0 ≤ i ≤ N − 1
1 ≤ k ≤ n1 − 2

[ai,0,k]1
1/3→ [ai,0,k+1]1

[ai,0,k]1
1/3→ [ai,1,k]1

[ai,0,k]1
1/3→ [ai,0,k−1]1

 for
{

0 ≤ i ≤ N − 1
1 ≤ k ≤ n1 − 2

[ai,0,n1−1]1
1/2→ [ai,1,n1−1]1

[ai,0,n1−1]1
1/2→ [ai,0,n1−2]1

}
for 0 ≤ i ≤ N − 1

[ai,n0−1,n1−1]1
1/2→ [ai,n0−2,n1−1]1

[ai,n0−1,n1−1]1
1/2→ [ai,n0−1,n1−2]1

}
for 0 ≤ i ≤ N − 1

[ai,0,0]1
1/2→ [ai,0,1]1

[ai,0,0]1
1/2→ [ai,1,0]1

}
for 0 ≤ i ≤ N − 1

Randomly walking with PDP systems 147

[ai,n0−1,0]1
1/2→ [ai,n0−2,0]1

[ai,n0−1,0]1
1/2→ [ai,n0−1,1]1

}
for 0 ≤ i ≤ N − 1

5 Evolution of the systems

The evolution of the systems is easy to follow since each particle i is represented by
an object ai,j (respectively, ai,j,k) that represents that the particle i is in the point (j)
(resp., (j, k)) of the one-dimensional (resp., two dimensional) space. In Figure 1 we can
observe how 10 particles move through the space along all the computation. Take into
account that the x axis represent the time steps and the y axis represent the point where
the particles are placed.

Fig. 1: Evolution of 10 particles in a one-dimensional space

6 Study of the complexity of the systems

We have made simulations for different number of particles and different sizes of space.
One of the first interesting points to investigate is the impact of the algorithm used to
simulate this program. We are comparing the three inference motors implemented in
P-Lingua: BBB, DNDP4 3 and DCBA. In Figures 2 and 3, we can see that BBB is, as
expected, the most efficient algorithm, and that the time spent while using the DCBA
algorithm drastically increments as the size or the number of particles increment. The
DNDP4, instead, keeps a similar time independent of the size or the number of particles.
While the first two figures are referred to one-dimensional spaces, Figures 4 and 5 give the

3This is the last version of the DNDP algorithm.

148 D. Orellana-Martín et al.

corresponding times for the two-dimensional spaces. These times have been calculated
using the running time of the simulation of the systems in a Intel Core i5-8250U CPU @
1.60GHz processor. In the future, we will try to update this comparative with parallel
algorithms, such as the ABCD simulator 4. This simulator is part of the PMC-GPU
project [19], and it parallelizes the concepts included in the DNDP algorithm. It would
be interesting to see if, for a big lattice or a high number of particles, the parallelism
improves the behaviour of the compared algorithms.

Fig. 2: Time spent in 1000 steps of computation of a one-dimensional space of size (50)
depending on the number of particles

7 Conclusions and future work

In the framework of PDP systems, several applications have been found by using them as
a modelling tool for real-life processes. In this sense, the study of particles moving in
a space is interesting for Monte Carlo processes and different types of movements of
particles in different fluids. Several research lines are open in this field. On the one hand,
new models can arise to simulate the behaviour of different types of movement such as
Brownian motion. On the other hand, different approaches depending on the simulators
are interesting to study.

Virus machines [4] are interesting models of computation inspired by the spread
and replication of viruses between hosts. In [15], authors introduce a variant of virus
machines, called stochastic virus machines, where the instructions are connected to
hosts instead of channels, and one of the channels going out of the host will be opened
depending on probability functions associated to them. A software for this model can be

4https://sourceforge.net/projects/pmcgpu/files/ABCD-GPU/

https://sourceforge.net/projects/pmcgpu/files/ABCD-GPU/

Randomly walking with PDP systems 149

Fig. 3: Time spent in 1000 steps of computation of 50 particles in a one-dimensional
space depending on the size

Fig. 4: Time spent in 1000 steps of computation of a two-dimensional space of size
(10, 10) depending on the number of particles

150 D. Orellana-Martín et al.

Fig. 5: Time spent in 1000 steps of computation of 20 particles in a two-dimensional
space depending on the size

found in [20]. It would be interesting to see if virus machines are good to simulate the
behaviour studied in this framework, and how the performance changes with respect to
the framework of membrane computing.

Besides, authors have been working lately in a stochastic version of virus machines [4],
called stochastic virusmachines [15], that use probabilities besides weights in the channels
between

We are working on new generators to automatically generate different systems
depending on the number of dimensions, number of particles and so on.

Acknowledgements

The research described in this work is supported by the Zhejiang Lab BioBit Program
(Grant No. 2022BCF05). D. Orellana-Martín acknowledges Contratación de Personal
Investigador Doctor. (Convocatoria 2019) 43 Contratos Capital Humano Línea 2. Paidi
2020, supported by the European Social Fund and Junta de Andalucía.

References

1. M. Arazo, M. Barroso, O. De la Torre, L. Moreno, A. Ribes, P. Ribes, A. Ventura, D. Orellana-
Martín. Stern-Gerlach Experiment. Proceedings of the Fourteenth Brainstorming Week on
Membrane Computing, February 1 - 5, 2016, Sevilla, Spain, 101-112.

2. M. Arazo, M. Barroso, O. De la Torre, L. Moreno, A. Ribes, P. Ribes, A. Ventura, D. Orellana-
Martín. Uranium-238 decay chain. Proceedings of the Fourteenth Brainstorming Week on
Membrane Computing, February 1 - 5, 2016, Sevilla, Spain, 113-130.

3. M. Cardona, M.À. Colomer, A. Margalida, A. Palau, I. Pérez-Hurtado, M.J. Pérez-Jiménez, D.
Sanuy. A computational modeling for real ecosystems based on P systems. Natural Computing,
10, 1 (2011), 39-53.

Randomly walking with PDP systems 151

4. X. Chen, M.J. Pérez-Jiménez, L. Valencia-Cabrera, B. Wang, X. Zeng. Computing with viruses.
Theoretical Computer Science, 623 (2016), 146-159.

5. M.À. Colomer, S. Lavín, I. Marco, A. Margalida, I. Pérez-Hurtado, M.J. Pérez-Jiménez, D.
Sanuy, E. Serrano, L. Valencia-Cabrera. Modeling population growth of Pyrenean Chamois
(Rupicapra p. pyrenaica) by using P systems. Membrane Computing, 11th International
Conference, CMC 2010, Jena, Germany, August 24-27, 2010, Revised Selected Papers. Lecture
Notes in Computer Science, 6501 (2011), 144-159. A preliminary version in Proceedings of
the Eleventh International Conference on Membrane Computing, Jena, Germany, 24-27 August
2010, Verlag ProBusiness Berlin, 2010, ISBN 978-3-86805-721-8, pp. 121-135.

6. M.À. Colomer, A. Margalida, M.J. Pérez-Jiménez. Population Dynamics P System (PDP)
Models: A Standardized Protocol for Describing and Applying Novel Bio-Inspired Computing
Tools. PLOS ONE, 8 (4): e60698 (2013).

7. M.À. Colomer, A. Margalida, D. Sanuy, M.J. Pérez-Jiménez. A bio-inspired computing model
as a new tool for modeling ecosystems: The avian scavengers as a case study. Ecological
modelling, 222, 1 (2011), 33-47.

8. M.À. Colomer, A. Margalida, L. Valencia, A. Palau. Application of a computational model for
complex fluvial ecosystems: The population dynamics of zebra mussel Dreissena polymorpha
as a case study. Ecological Complexity, 20 (2014), 116-126.

9. P. Frisco, M. Gheorghe, M. J. Pérez-Jiménez. Applications of Membrane Computing in Systems
and Synthetic Biology. Emergence, Complexity and Computation Series, 2014.

10. M.Á. Martínez, I. Pérez-Hurtado, M. García-Quismondo, L.F. Macías-Ramos, L. Valencia-
Cabrera, Á. Romero-Jiménez, C. Graciani, A. Riscos-Núñez,M.À. Colomer,M.J. Pérez-Jiménez.
DCBA: Simulating population dynamics P systems with proportional objects distribution.
Membrane Computing, 13th International Conference, CMC 2012 Budapest, Hungary, August
28-31, 2012, Revised Selected Papers. Lecture Notes in Computer Science, 7762 (2013), 257-
276. A preliminary version in Proceedings of the 13th International Conference on Membrane
Computing, Budapest, Hungary, August 28-31, 2012, pp. 291-310.

11. L. Pan, Gh. Paun, M. J. Pérez-Jiménez, T. Song. Bio-inspired Computing: Theories and
Applications. Communications in Computer and Information Science Series, 2014.

12. Gh. Păun. Computing with membranes. Journal of Computer and System Sciences, 61, 1
(2000), 108-143, and Turku Center for CS-TUCS Report No. 208, 1998.

13. Gh. Păun. Membrane Computing: An introduction. Springer Natural Computing Series, 2002.
14. Gh. Paun, G. Rozenberg, A. Salomaa. The Oxford Handbook of Membrane Computing.

Oxford University Press, Oxford, U.K., 2009.
15. A. Ramírez-de-Arellano, J.A. Rodríguez-Gallego, D. Orellana-Martín, S. Ivanov. Stochastic

Virus Machines. Proceedings of the Nineteenth Brainstorming Week on Membrane Computing,
January 24 - 27, 2023, Sevilla, Spain, 79-90.

16. G. Zhang, M. J. Pérez-Jiménez, M. Gheorghe. Real-life applications with Membrane Comput-
ing. Emergence, Complexity and Computation Series, 2017.

17. http://www.p-lingua.org/wiki/index.php/Main_Page
18. http://www.p-lingua.org/mecosim/
19. https://sourceforge.net/projects/pmcgpu/
20. https://github.com/RGNC/virusmachines

http://www.p-lingua.org/wiki/index.php/Main_Page
http://www.p-lingua.org/mecosim/
https://sourceforge.net/projects/pmcgpu/
https://github.com/RGNC/virusmachines

Solving the SAT problem using spiking neural P systems
with coloured spikes and division rules∗

Prithwineel Paul and Petr Sosík

Institute of Computer Science, Faculty of Philosophy and Science, Silesian University in Opava,
Czech Republic

prithwineelpaul@gmail.com

Abstract. Spiking neural P systems (SNPS) are variants of the third-generation
neural networks. In the last few decades, different variants of SNPS models have
been introduced. In most of the SNPS models, spikes are represented using an
alphabet with just one letter. In this paper we use a deterministic SNPS model with
coloured spikes (i.e., the alphabet representing spikes contains multiple letters),
together with neuron division rules to demonstrate an efficient solution to the SAT
problem. As a result, we provide a simpler construction with significantly less
class resources to solve the SAT problem in comparison to previously reported
results using SNPSs.

Keywords: Spiking neural P system · Neuron division · Coloured spikes · SAT
problem.

1 Introduction

Membrane computing is a well-known natural computing model. The computing models
in membrane computing are inspired by the working of biological cells. In the last
decades, many researchers have constructed different variants of membrane computing
models inspired by different biological phenomena [14]. One such type of cell inspiring
many computational models is the neuron. The structure and function of biological
neurons communicating via sending impulses (spikes) was the main motivation behind
the construction of a popular variant of membrane computing model known as the spiking
neural P system (SNPS) [5,10]. Since SNNs (i.e., spiking neural networks) [3] belong to
third-generation neural networks, SNPS models can also be considered third-generation
neural networks.

Membrane computing models are mainly categorised into three types, i.e, (1) cell-
like; (2) tissue-like; (3) neural-like. One of the most popular directions of research in
membrane computing is solving computationally hard problems using different variants
of P systems. A comprehensive survey on the use of variants of membrane computing
models for solving NP-hard problems, i.e., NP-complete (SAT, SUBSET-SUM) and
PSPACE-complete problems (QSAT, Q3SAT) can be found in [16,19]. For instance, a
SNPS with pre-computed resources has been used to solve QSAT, Q3SAT problems [8],

∗Supported by the Silesian University in Opava under the Student Funding Plan, project
SGS/11/2023.

Solving SAT using SNPS with coloured spikes and division rules 153

SUBSET-SUM problem [4,9,11], SAT & 3SAT problems [6,11] in a polynomial or even
linear time. An SNPS with neuron division and budding can solve the SAT problem in a
polynomial time with respect to the number of literals n and the number of clausesm.
Moreover, these SNP systems can solve the problem in a deterministic manner [12,22].
Similarly, an SNPS with budding rules [7] and an SNPS with division rules [20] can
solve the SAT problem in polynomial time and a deterministic manner. Furthermore,
SNPSs with structural plasticity and time-free SNPS models can solve the Subset Sum
problem in a feasible time [2,17]. In [1] it has been proved that SNPS with astrocytes
producing calcium can solve the Subset Sum problem in a polynomial time. Recently, a
linear time uniform solution for the Boolean SAT problem using self-adapting SNPS
with refractory period and propagation delay is derived in [23]. Finally, SNPS models
have been used to solve maximal independent set selection problems from distributed
computing [21].

In this paper we construct a new variant of SNPS model, i.e., spiking neural P system
with coloured spikes and division rules. The idea of coloured spikes was introduced
by Song et. al. in [18] to simplify the construction of a SNPS solving complex tasks.
Division rules were introduced for the first time in [13,12] to solve the SAT problem
using SNPS with division rules and budding. Both the spiking rules and the division
rules used here to solve the SAT problem are deterministic in nature. In this paper we
show that, with this combined variant, we can solve the SAT problem efficiently using a
lower number of steps as well as less amount of other resources.

The paper is organised in the following manner: in Section 2, we discuss the structure
and function of SNP system with coloured spikes and neuron division. In Section 3 we
describe a solution to the SAT problem using this variant of SNPS. In Section 3 we
give a brief comparison of descriptional and computational complexity of two other
SNPS models with division rules, in the amount of resources necessary to solve the SAT
problem. Section 5 is conclusive in nature.

2 Spiking neural P system with coloured spikes and neuron division

In this section we introduce the new variant of SNPS model, i.e., spiking neural P systems
with coloured spikes and neuron division, which we mentioned in Section 1. More
precisely, this variant combines properties of two existing SNPS models, i.e., SNPS with
neuron division [12] and SNPS with coloured spikes [18]. Division rules are used to
obtain an exponential workspace in polynomial time to apply the strategy of trading
space for time, while the use of coloured spikes allows for a simpler and more efficient
construction of the SNPS. In the sequel we denote by L(E) the language associated to
E, where E is a regular expression over an alphabet S.

Definition 1. A spiking neural P system with coloured spikes and neuron division of
degree m ≥ 1 is a construct of the form Π = (S,H, syn, σ1, σ2, . . . , σm, R, in, out)
where

• m ≥ 1 represents the initial degree, i.e., the number of neurons initially present in
the system;

• S = {a1, a2, . . . , ag}, g ∈ N is the alphabet of spikes of different colours;

154 Prithwineel Paul and Petr Sosík

• H is the set containing labels of the neurons;
• syn ⊆ H × H represents the synapse dictionary between the neurons where

(i, i) /∈ syn for i ∈ H .
• σ1, σ2, . . . , σm are neurons initially present in the system, with {1, . . . ,m} ⊆ H,

where each neuron σi = 〈ni1, ni2, . . . , nig〉, for 1 ≤ i ≤ m, contains initially nij ≥ 0
spikes of type aj (1 ≤ j ≤ g);

• R represents the set containing the rules of the system Π . Each neuron labelled
i ∈ H contains rules denoted by [r]i. The rules inR are divided into three categories:
• Spiking rule: [E/an1

1 an2
2 . . . a

ng
g → ap11 a

p2
2 . . . a

pg
g ; d]i where i ∈ H , E is a

regular expression over S; ni ≥ pi ≥ 0 (1 ≤ i ≤ g); d ≥ 0 is called delay.
Furthermore, pi > 0 for at least one i, 1 ≤ i ≤ g.
• Forgetting rule: [at11 a

t2
2 . . . atnn → λ]i where i ∈ H , and at11 a

t2
2 . . . atnn /∈ L(E)

for each regular expression E associated with any spiking rule present in the
neuron i;

• Neuron division rule: [E]i → []j || []k where E is a regular expression over S
and i, j, k ∈ H .

• in and out represent the input and output neurons, respectively.

A spiking rule [E/an1
1 an2

2 . . . a
ng
g → ap11 a

p2
2 . . . a

pg
g ; d]i is applicable when the

neuron σi contains spikes ac11 a
c2
2 . . . acnn ∈ L(E) and cj ≥ nj (1 ≤ j ≤ g). After

application of the rule, nj copies of the spike aj (1 ≤ j ≤ g) are consumed while
(cj − nj) copies remains inside the neuron σi. Furthermore, pj spikes (1 ≤ j ≤ g) are
sent to all neurons σi is connected to. These are either neurons σk such that (i, k) ∈ syn,
or neurons to which σi inherited synapses during neuron division, as described bellow. If
the delay d = 0, then the spikes leave the neuron i immediately. However, if d ≥ 1 and the
rule is applied at time t, then the neuron iwill be closed at step t, t+1, t+2, . . . , t+d−1.
During this phase, the neuron cannot receive any spike from outside nor can apply any
rule. At step (t+ d), the neuron spikes and it can also receive spikes from other neurons
and apply a rule. The spiking rule [E/an1

1 an2
2 . . . a

ng
g → ap11 a

p2
2 . . . a

pg
g ; d]i is simply

written as [an1
1 an2

2 . . . a
ng
g → ap11 a

p2
2 . . . a

pg
g ; d]i if E = an1

1 an2
2 . . . a

ng
g . If d = 0, then

it becomes [E/an1
1 an2

2 . . . a
ng
g → ap11 a

p2
2 . . . a

pg
g]i.

A forgetting rule [at11 a
t2
2 . . . atnn → λ]i is applicable when the neuron σi contains

exactly the spikes at11 a
t2
2 . . . atnn . Then all these spikes are consumed in the neuron σi.

A division rule [E]i → []j || []k is applicable if a neuron σi contains spikes
ac11 a

c2
2 . . . acnn ∈ L(E). Then after application of the rule, two new neurons labelled j and

k are created from σi and the spikes are consumed. Child neurons contain developmental
rules from R labelled j and k, respectively, and initially they do not contain any spikes.
Also, child neurons inherit synaptic connections of the parent neuron. If there exists
any connection (σt, σi) (i.e., σt is connected to σi), then after division there exist
connections (σt, σj) and (σt, σk). Similarly, if there exists a connection (σi, σt), then
(σj , σt) and (σk, σt) will exist after division. Moreover, the child neurons will create
synaptic connections which are provided by the synapse dictionary.

The configuration of the system provides information about the number of spikes
present in the neurons, the synaptic connections with the other neurons and whether
the neuron is open/ closed (i.e., whether it can receive/send spikes). The SNPS models

Solving SAT using SNPS with coloured spikes and division rules 155

work as a parallel distributive computing model where the rules present in all neurons
are applied in parallel synchronized manner and the configuration moves to the next
configuration. Each computation starts from the initial configuration and stops at a final
configuration (i.e. when no rules are further applicable in any of the neurons). If a neuron
has more than one rule which is applicable in a given step, then one of these rules is
non-deterministically chosen. However, in this work, such a situation never occurs and
rules in the neurons are applied in a deterministic manner.

Since already the introductory variant of the SNPS presented in [5] is computationally
universal in the Turing sense, and as our variant of the SNPS is an extension of this basic
model, its computational universality follows by the results presented already in [5].

In the next section we use the deterministic SNPS with coloured spikes and neuron
division to obtain a uniform solution to the SAT problem in a linear time.

3 A solution to the SAT problem

Many decision problems have been solved using spiking neural P systems in uniform as
well as semi-uniform ways [2,6,8,9,11,12,17,20,22]. LetM be a decision problem. If
the problemM is solved in a semi-uniform manner, then for each instance I ofM , a
spiking neural P systemΠI,M is constructed in polynomial time (with respect to the size
of the instance I). The structure and initial configuration of the systemΠI,M depends
on the instance I . Moreover, the system ΠI,M halts (or it may spike a specified number
of spikes within a time interval) if and only if I is a positive instance of the decision
problemM . A uniform solution ofM contains the family {ΠM (n)}n∈N of SNP systems
where for each instance I ∈ M of size n, polynomial number of spikes based on n is
introduced into a specified input neuron of ΠI,M . Moreover, the system ΠI,M halts if
and only if I is a positive instance ofM . The uniform solutions are strictly associated
with the structure of the problem instead of being associated with only one instance of
the decision problem. This feature makes the uniform solutions to decision problems
more preferable than the semi-uniform solutions. Also, in order to obtain a semi-uniform
solution, the SNP system does not require any specific input neuron. However, in the case
of uniform solutions, the system must have a specified input neuron(s) which receives
the description of an instance of the decision problem in the form of a spike train.

The SAT problem (or the Boolean satisfiability problem) [15] is a well-known
NP-complete decision problem. Each instance is a formula in propositional logic with
variables obtaining values TRUTH or FALSE. The SAT decision problem is the problem
of determining whether there exists an assignment of truth values to the variables such
that the whole formula evaluates to TRUTH.

Let us consider an instance represented by the formula γn,m = C1 ∧ C2 ∧ . . . ∧ Cm
in the conjunctive normal form, where Ci (1 ≤ i ≤ m) represent the clauses. Each
clause is a disjunction of literals of the form xj or ¬xj , where xj are logical variables,
1 ≤ j ≤ n.Moreover, the class of SAT instances with n literals andm clauses is denoted
by SAT (n,m). So γn,m ∈ SAT (n,m). In order to solve the SAT problem, at first
we have to encode the instance γn,m using spikes in the SNPS, so that the encoded
instance could be sent to the input neuron. In this work, we consider the SNPS model
with coloured spikes, i.e., different variables are encoded by different types of spikes.

156 Prithwineel Paul and Petr Sosík

The encoding of the instance γn,m is as follows:

code(γn,m) = an+1(α1,1α1,2 . . . α1,n)ac(α2,1α2,2 . . . α2,n)ac . . .
. . . (αm,1 . . . αm,n)acaf ,

where

αi,j =


aj , if xj ∈ Ci,
a′j , if ¬xj ∈ Ci,
a, otherwise.

In addition to αi,j , the encoding of the instance contains other auxiliary spikes. The
term an+1 is added at the beginning in order to give the system a necessary initial period
during which it generates an exponential workspace with 2n neurons. The encoding of
each clause is separated by ac and the end of the encoding is identified by af .

The spiking neural P system with coloured spikes and division rules solving the
instances in SAT (n,m) is described below.

3.1 The SNPS description

The structure of the SNPS with coloured spikes and division rules is as follows:
Πn,m = (S,H, syn, σ10 , σ1′0 , σn+1, σn+2, σn+3, σn+4, σn+5, R, in, out) where

• S = {ai, a′i | 1 ≤ i ≤ n} ∪ {a, as, ac, af}

• H = {i, i′, i0, i′0 | i = 1, 2, . . . , n} ∪ {n+ 1, n+ 2, n+ 3, n+ 4, n+ 5}
∪ {in, out} ∪ {ti, fi | i = 1, 2, . . . , n};

• syn = {(i, ti), (i′, fi) | i = 1, 2, . . . , n}
∪ {(n+ 2, n+ 1), (n+ 2, n+ 3), (n+ 3, n+ 2), (n+ 4, n+ 2), (n+ 4, n+ 3)}
∪ {(in, 10), (in, 1′0), (in, n+ 5), (n+ 5, t1), (n+ 5, f1)} ∪ {(t1, out), (f1, out)}

• The initial configuration of the system contains neuronswith labels in, out, 10, 1′0, n+
1, n+ 2, n+ 3, n+ 4, n+ 5. The neurons with labels 10, 1

′
0, n+ 2, n+ 3 and n+ 4

contain the spike a, the remaining neurons contain no spike.

• Rules in R are divided into four modules: (1) Generating module; (2) Input module;
(3) Checking module; (4) Output module.

(1) Rules in the generating module:
[a]i0 → []i || [](i+1)0 ; i = 1, 2, . . . , n− 2
[a](n−1)0 → []n−1 || []n
[a]i′0 → []i′ || [](i+1)′0

; i = 1, 2, . . . , n− 2
[a](n−1)′0 → [](n−1)′ || []n′
[a]ti → []ti+1

|| []fi+1
; i = 1, 2, . . . , n− 1;

[a]fi → []ti+1 || []fi+1 ; i = 1, 2, . . . , n− 1;
[a]n+1 → []t1 || []f1
[a→ a]n+2

[a2 → λ]n+2

[a→ a]n+3

Solving SAT using SNPS with coloured spikes and division rules 157

[a]10 → []1 || []20 [a]1′0
→ []1′ || []2′0

[a]n+1 → []t1 || []f1

n+1

n+2 n+3

n+4

code(γn,m) = an+1(α1,1α1,2 . . . α1,n)ac . . . (αm,1αm,2 . . . αm,n)acaf

in
out

S∗/ac → ac

S∗/af → af

n+ 5

a a
a→ a a→ a
a2 → λ a2 → λ

a

a→ a;n+ 1

a+s a
+/a→ a

ai → ai(1 ≤ i ≤ n)

a→ a
ac → ac;

a
′

i → a
′

i(1 ≤ i ≤ n)

af → af

10 1
′

0

a a

Fig. 1: Initial structure of the SNPS solving the SAT problem.

[a2 → λ]n+3

[a→ a;n+ 1]n+4

[S∗/ac → ac]n+5

[S∗/af → af]n+5

(2) Rules in the input module:
[ai → ai]in; i = 1, 2, . . . , n
[a′i → a′i]in; i = 1, 2, . . . , n
[a→ a]in;
[ac → ac]in;
[af → af]in;
[S∗/ai → a]i; i = 1, 2, . . . , n
[S∗/a′i → a]i′ ; i = 1, 2, . . . , n
Note: the last two rules are not seen in Fig. 1 as the neurons σi, i = 1, 2, . . . , n,
appear during the generating phase.

(3) Rules in the checking module:
[asaa/a→ as]tn

158 Prithwineel Paul and Petr Sosík

[asac → λ]tn
[asaca/aca→ as]tn
[asaf → a]tn
[asaa/a→ as]fn
[asac → λ]fn
[asaca/aca→ as]fn
[asaf → a]fn

(4) Rules in the output module:
[a+s a

+/a→ a]out

[a]n+1 → []t1 || []f1

a a

a

a→ a
a→ a

a2 → λ
a2 → λ

a→ a;n+ 1

n+1

n+2
n+3

n+4

Fig. 2: Details of the generating module producing the exponential workspace of 2n

neurons in the first n computational steps of the SNPS.

The initial structure of the SNPS with coloured spikes and division rules solving an
instance of the SAT problem using contains 9 neurons (see Fig. 1). Computation of the
SNPS is divided into four stages: (1) generating; (2) input; (3) checking; (4) output.

In the generating stage, the division rules are used to create an exponential number
of neurons which are further used during the input and checking stages. In the input
stage, the input neuron receives the encoded instance of the SAT problem. This stage
overlaps with the checking stage during which the SNPS verifies whether any assignment
of values of the variables x1, x2, . . . , xn satisfies all the clauses Ci (1 ≤ i ≤ m) present

Solving SAT using SNPS with coloured spikes and division rules 159

S∗/a1 → a S∗/a
′

1 → a

[a]n+1 → []t1 || []f1

n+1

n+2 n+3

n+4

code(γn,m) = an+1(α1,1α1,2 . . . α1,n)ac . . . (αm,1αm,2 . . . αm,n)acaf

in
out

S∗/ac → ac

S∗/af → af

n+ 5

a a
a→ a a→ a
a2 → λ a2 → λ

a

a→ a;n+ 1

a+s a
+/a→ a

ai → ai(1 ≤ i ≤ n)

a→ a
ac → ac;

a
′

i → a
′

i(1 ≤ i ≤ n)

af → af

1 1
′ 20

2
′

0

[a]20 → []2 || []30 [a]2′0
→ []2′ || []3′0

Fig. 3: Structure of the SNPS at time t = 2

in the proposition formula γn,m. Finally, if the output neuron spikes, it confirms that the
formula γn,m is satisfiable.

3.2 Generating stage

Neurons 10 and 1′0 contain initially the spike a and the rule [a]10 → []1 || []20 and
[a]1′0 → []1′ || []2′0 , respectively. Thus, the neuron σ10 creates two neurons with labels 1
and 20, and the neuron σ1′0 creates two neurons with labels 1′ and 2′0 at time t = 1.

The input neuron has synaptic connections to the neurons with labels 10 and 1′0
which are inherited by the neurons 1, 1′, 20 and 2′0. At times i = 1, 2, . . . , n+ 1 the input
neuron receives the spike a from the input spike train and at times i = 2, 3, . . . , n− 1 it
sends the spike to neurons i0 and i′0 (2 ≤ i ≤ n− 1). At times i = n, n+ 1 and n+ 2
the input neuron sends spikes, too, but no neurons with labels i0 and i′0 (n ≤ i ≤ n+ 2
exist.)

Neurons i0 and i′0 (2 ≤ i ≤ n − 2) contain the rule [a]i0 → []i || [](i+1)0 and
[a]i′0 → []i′ || [](i+1)′0

, i.e., the neuron σi0 creates two neurons with labels i and (i+ 1)0,
and the neuron σi′0 creates two neurons with labels i′ and (i+ 1)′0 (2 ≤ i ≤ n− 1).

160 Prithwineel Paul and Petr Sosík

Finally, at step t = n − 1, neurons with labels (n − 1)0 and (n − 1)′0 divide and
create neurons with labels n − 1, n, (n − 1)′ and n′. So after application of all these
division rules, there is a layer of neurons σi, σi′ (1 ≤ i ≤ n) shown in Fig. 7, and the
input neuron has synaptic connections to all of them.

Simultaneously, the neurons with labels n + 1, n + 2, n + 3 and n + 4 create
subsequently 2n neurons which will be used in the checking stage. The circuit controlling
the generating stage is depicted in Figure 2. Initially, the neurons n+ 2, n+ 3 and n+ 4
contain one spike. At time t = 1, σn+2 and σn+3 spike and σn+1 receives a spike at time
t = 2. At t = 2, the rule [a]n+1 → []t1 || []f1 is applied. So at t = 3, two new neurons
with labels t1 and f1 are created.

Note that the neuron σ1 (resp. σ1′) is connected to σt1 (resp. σf1) using the synaptic
connections from synapse dictionary. Moreover, σt1 and σf1 are connected to the output
neuronwith the synaptic connections from the synapse directory (see figure 4). The neuron
σt1 contains the rule [a]t1 → []t2 || []f2 and neuron σf1 contains [a]f1 → []t2 || []f2 .

At the same time t = 3, neurons σt1 and σf1 receive the spike a from σn+2. Hence,
at t = 4, each of σt1 and σf1 is divided into σt2 and σf2 . Again, these neurons receive
one spike from σ(n+2) and they are divided at the next step. This process will continue
until t = n+ 2. Newly created neurons ti, fi (1 ≤ i ≤ n) will also get further synapses
due to the synapse dictionary, as described above. After (n+ 2) steps, we will have a
system shown in Figure 7.

Finally, the rule a → a;n + 1 in σn+4 is applied at time t = n + 2 and thus both
σn+2 and σn+3 receive one spike at t = n + 3. Next, the rule a2 → λ is applied and
both spikes in σn+2 and σn+3 are consumed. So no spikes remain inside them and they
are inactive from now on.

3.3 Input stage

Recall that the input neuron receives the encoding of an instance of the SAT problem
with n variables andm clauses, i.e., γn,m, where

code(γn,m) = an+1(α1,1α1,2 . . . α1,n)ac . . . (αm,1αm,2 . . . αm,n)acaf .

The encoding of each clause is ended by ac and after the input is completely read, it
ends with af . The initial buffer an+1 is used to delay the input of the clause by n+ 1
steps, giving the SNPS enough time to generate 2n checking neurons. The input neuron in
has the following rules: (1) a→ a; (2) ai → ai (1 ≤ i ≤ n); (3) a′i → a′i (1 ≤ i ≤ n);
(4) ac → ac; (5) af → af . Initially, the input neuron is empty and when it receives
a, ai, a

′
i, ac or af as input, it spikes and sends the same spike to neurons with labels i, i′

(1 ≤ i ≤ n) and n+ 5.
At time t = n+ 2, the input neuron receives α1,1 as input. Since the input neuron

contains the rules [ai → ai]in; [a′i → a′i]in (1 ≤ i ≤ n), it will spike immediately. The
neurons with label i contain the rule [S∗/ai → a]i (1 ≤ i ≤ n) and neurons with label i′
contain the rule [S∗/a′i → a]i′ (1 ≤ i ≤ n). These rules are activated upon the existence
of the literal xi (resp. ¬xi) in a clause. If σi spikes using the rule [S∗/ai → a]i, it signals
that the literal xi is present in a clause. Similarly, the use of the rule [S∗/a′i → a]i′ in σi′
signals the presence of ¬xi in a clause.

Solving SAT using SNPS with coloured spikes and division rules 161

a→ a a→ a
a2 → λ

a2 → λ

a

a→ a;n+ 1

n+2 n+3

n +4

1 2 2
′

t1 f1

[a]t1 → []t2 || []f2 [a]f1 → []t2 || []f2

in

out

1
′

S∗/ac → ac

S∗/af → af

n+ 5

code(γn,m) = an+1(α1,1α1,2 . . . α1,n)ac

. . . (αm,1αm,2 . . . αm,n)acaf

a+s a
+/a→ a

ai → ai(1 ≤ i ≤ n)
a

′

i → a
′

i(1 ≤ i ≤ n)
a→ a
ac → ac

S∗/a1 → a S∗/a
′

1 → a S∗/a2 → a S∗/a
′

2 → a [a]30 → []3 || []40 [a]3′0
→ []3′ || []4′0

30 3
′

0

af → af

Fig. 4: Structure of the SNPS at time t = 3

3.4 Checking stage

After the generating stage, the input neuron is connected to neuronsσi andσi′ (1 ≤ i ≤ n).
These neurons, in turn, are connected to the checking layer consisting of 2n neurons
labelled tn or fn, see Fig. 7. Each of the checking neurons σtn or σfn has exactly n
incoming synapses from the input neurons σi or σi′ (1 ≤ i ≤ n). These synapses
represent one of the 2n possible assignments of ‘TRUTH’ or ‘FALSE’ to the n variables
of the formula. The structure of these synapses was created by either inherited synapses
or by the synapse dictionary during the generating stage. The incoming synapses are
indicated under checking neurons in Figures 4 to 7 by expressions in parentheses. Let us
consider the assignment t1t2f3 . . . fn (i.e., the first two variables have ‘TRUTH’ and the
remaining ones have ‘FALSE’). The corresponding checking neuron has synapses from
neurons σ1, σ2, σ′3, . . . , σ′n, in the input module.

162 Prithwineel Paul and Petr Sosík

t2 f2 t2 f2

(t1t2) (t1f2) (f1t2) (f1f2)

1 1
′

2

2
′

out

a

a→ a
a2 → λ

a

a→ a
a2 → λ

a

a→ a;n+ 1

n+ 2 n+ 3

n+ 4

S∗/ac → ac

S∗/af → af

n+ 5

in

code(γn,m) = an+1(α1,1α1,2 . . . α1,n)ac

. . . (αm,1αm,2 . . . αm,n)acaf

a+s a
+/a→ a

[a]t2 → [a]f2 → [a]t2 → [a]f2 →

S∗/a1 → a S∗/a
′

1 → a S∗/a2 → a S∗/a
′

2 → a
[a]40 → []4 || []50 [a]4′0

→ []4′ || []5′0

[]t3 || []f3
[]t3 || []f3 []t3 || []f3 []t3 || []f3

ai → ai(1 ≤ i ≤ n)
a

′

i → a
′

i(1 ≤ i ≤ n)
a→ λ

af → af

40 4
′

0

S∗/a3 → a S∗/a
′

3 → a
3

3
′

ac → ac

2

Fig. 5: Structure of the SNPS at time t = 4

The input module receives encoded clauses one-by-one. Spiking of the neuron σi in
the input module signals the presence of the literal xi in the clause, and spiking of the
neuron σi′ signals the presence of the literal ¬xi. Therefore, each of the neurons σtn
or σfn obtains one or more spike a if its assignment satisfies the clause. These neurons
contain rules (1)asaa/a→ as; (2)asac → λ; (3)asaca/aca→ as; (4)asaf → a.

Initially, neurons in the checking module contain the spike as. If it receives the spike
a from the input module, no rule can be applied. When another a spike comes, the rule
asaa/a→ as is applied and only one spike a remains in the neuron. When the encoding
of the clause is read completely, the spike ac is received from σn+5. If the assignment
of a checking neuron satisfies the clause, the neuron now has the spikes asaca and the
rule asaca/aca→ as is applied. Otherwise, the neuron contains the spike asac and they
are consumed by the rule asac → λ. Since the neuron looses the spike as, no further
computation will take place inside it.

3.5 Output stage

The output neuron can receive spikes as due to the application of the rules asaa/a→ as
and asaca/aca → as in checking neurons during the checking stage. However, these

Solving SAT using SNPS with coloured spikes and division rules 163

t3 t3 t3 t3f3 f3
f3

f3

(t1t2t3) (t1t2f3) (t1f2t3) (t1f2f3)
(f1t2t3) (f1t2f3) (f1f2t3) (f1f2f3)

a
a→ a

a
a→ a

a2 → λ a2 → λ

a
a→ a;n+ 1

out

1

1
′

2

2
′ 3

3
′

4 4
′

n+ 2
n+ 3

n+ 4

n+ 5

S∗/ac → ac

S∗/af → af

code(γn,m) = an+1(α1,1α1,2 . . . α1,n)ac

. . . (αm,1αm,2 . . . αm,n)acaf

ai → ai(1 ≤ i ≤ n)
a

′

i → a
′

i(1 ≤ i ≤ n)
a→ a
ac → ac; in

S∗/a1 → a S∗/a
′

1 → a S∗/a2 → a S∗/a
′

2 → a S∗/a3 → a S∗/a
′

3 → a S∗/a4 → a S∗/a
′

4 → a

[a]t3 → [a]f3 → [a]t3 → [a]f3 → [a]t3 → [a]f3 → [a]t3 → [a]f3 →
[]t4 || []f4 []t4 || []f4 []t4 || []f4 []t4 || []f4 []t4 || []f4 []t4 || []f4 []t4 || []f4 []t4 || []f4

a+s a
+/a→ a

[a]50 → []5 || []60 [a]5′0
→ []50 || []6′0af → af

50 5
′

0

Fig. 6: Structure of the SNPS at time t = 5

spikes are ignored. Finally, when the formula is completely read, the checking neurons
receive the spike af from σn+5. If any of them still has the spike as (meaning that its
assignment satisfies all clauses), it spikes using the rule asaf → a and the spike a is
sent to the output neuron. Next, the rule a+s a+/a→ a is applied in the output neuron,
confirming that the formula is satisfiable.

4 Discussion

In this section we compare parameters of our solution to the SAT problem using a SNPS
with coloured spikes and division rules with two other published papers [20] and [22]
presenting similar solutions to the SAT with SNP systems. Both papers use neuron
division rules, the authors of [22] use also neuron dissolution rules. We compare five
parameters of descriptional complexity of the used SNP systems and also the running

164 Prithwineel Paul and Petr Sosík

ai → ai(1 ≤ i ≤ n)

a
′

i → a
′

i(1 ≤ i ≤ n)

1 2
n

1
′

n
′

tn tn tnfn fn fn

a+s a
+/a→ a

a→ λ;

S∗/a1 → a S∗/a
′

1 → a S∗/a2 → a S∗/a
′

2 → a S∗/an → a S∗/a
′

n → a

X X X X X X

X = {asaa/a→ as; asac → λ; asaca/aca→ as; asaf → a}

as as as as as as

code(γn,m) = an+1(α1,1α1,2 . . . α1,n)ac(α2,1α2,2 . . . α2,n)ac

. . . (αm,1αm,2 . . . αm,n)acaf

S∗/ac → ac

S∗/af → af

n+ 5

in

out

(t1t2 . . . tn)(t1t2 . . . fn) (t1t2..fn−1tn)

(t1t2..fn−1fn)

(f1f2..fn−1tn) (t1t2..fn−1fn)

2
′

ac → ac
af → af

n
. . .

. . .

Fig. 7: Structure of the SNPS at time t = n+ 2

time complexity. The results are summarized in the table below assuming a solution to
an instance of SAT (n,m), i.e., withm clauses and n variables.

It follows that all descriptional complexity parameters used in our model have
significantly lower values than in the two compared papers. More specifically, the number
of neurons, number of neuron labels, size of the synapse dictionary and number of rules
used in our solution are significantly lower than in previous solutions and we are able to
achieve this result using only 5 initial spikes. Especially, the number of rules is linear to
n while in the previously reported solutions it is quadratic or even exponential. Note that
the couloured spikes largely help to organize the work of the system and allow for these
simplifications.

The only exception is the running time which is O(n+m) in [22], while our SNPS
runs in time O(nm). The explanation is simple: the authors of [22] usem input neurons
and a special encoding of the formula where each clause is sent in parallel to its designated
input neuron. We conjecture that such an input module can be employed also in our case.

A more detailed analysis of the running time shows that the generation stage in our
paper requires (n+1) steps when the exponential workspace is created. The total number
of steps required for the following input stage reading the encoded formula via the input
neuron is m(n + 1) + 1., The checking stage largely overlaps with the input one and
requires two more steps to complete. Finally the output stage required only one step.

Solving SAT using SNPS with coloured spikes and division rules 165

Resources Wang et. al. [20] Zhao et. al. [22] This paper
Initial number of neurons 11 3n+ 5 9
Initial number of spikes 20 2m+ 3 5
Number of neuron labels 10n+ 7 2n + 11 6n+ 7
Size of synapse dictionary 6n+ 11 5n+ 5 2n+ 12

Number of rules 2n2 + 26n+ 26 n2n + 1
3 (4n − 1) 8n+ 16

+ 9n+ 5
Time complexity 4n+ nm+ 5 2n+m+ 3 nm+ n+m+ 5
Number of neurons 2n + 8n 2n+1 − 2 2n + 2n
generated throughout

the computation

5 Conclusion

We presented a deterministic spiking neural P system with coloured spikes and division
rules which has been used to solve the SAT problem in linear time. We have shown that
our model uses significantly less resources than those reported in [20] or [22] to solve the
SAT problem. It is fair to note that we use a linear number of different spikes with respect
to the number n of variables in SAT, while the two mentioned papers use just one type
of spike. However, most types of spikes in our construction is used just to encode the
input formula. We could use a similar input module as in [20] with only a few changes
which would lower the number of different spikes in our model to just 5. This is left for
future research. Furthermore, using another type of input module with multiple input
neurons as that used in [22], we could possibly restrict our running time to O(n+m).
As another promising future research direction one could focus on efficient solutions to
PSPACE-complete problems using a similar SNPS model as that discussed in this paper.

References

1. Aman, B.: Solving Subset Sum by spiking neural P systems with astrocytes producing calcium.
Natural Computing pp. 1–10 (2022)

2. Cabarle, F.G.C., Hernandez, N.H.S., Martínez-del Amor, M.Á.: Spiking neural P systems
with structural plasticity: Attacking the Subset Sum problem. In: Membrane Computing: 16th
International Conference, CMC 2015, Valencia, Spain, August 17-21, 2015, Revised Selected
Papers 16. pp. 106–116. Springer (2015)

3. Ghosh-Dastidar, S., Adeli, H.: Spiking neural networks. International journal of neural systems
19(04), 295–308 (2009)

4. Gutiérrez Naranjo, M.Á., Leporati, A.: Solving numerical NP-complete problems by spiking
neural P systems with pre–computed resources. Proceedings of the Sixth Brainstorming Week
on Membrane Computing, 193-210. Sevilla, ETS de Ingeniería Informática, 4-8 de Febrero,
2008 (2008)

5. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta informaticae
71(2-3), 279–308 (2006)

6. Ishdorj, T.O., Leporati, A.: Uniform solutions to SAT and 3-SAT by spiking neural P systems
with pre-computed resources. Natural Computing 7, 519–534 (2008)

166 Prithwineel Paul and Petr Sosík

7. Ishdorj, T.O., Leporati, A., Pan, L., Wang, J.: Solving NP-complete problems by spiking
neural P systems with budding rules. In: Membrane Computing: 10th International Workshop,
WMC 2009, Curtea de Arges, Romania, August 24-27, 2009. Revised Selected and Invited
Papers 10. pp. 335–353. Springer (2010)

8. Ishdorj, T.O., Leporati, A., Pan, L., Zeng, X., Zhang, X.: Deterministic solutions to QSAT
and Q3SAT by spiking neural P systems with pre-computed resources. Theoretical Computer
Science 411(25), 2345–2358 (2010)

9. Leporati, A., Gutiérrez-Naranjo, M.A.: Solving Subset Sum by spiking neural P systems with
pre-computed resources. Fundamenta Informaticae 87(1), 61–77 (2008)

10. Leporati, A., Mauri, G., Zandron, C.: Spiking neural P systems: main ideas and results. Natural
Computing 21(4), 629–649 (2022)

11. Leporati, A., Mauri, G., Zandron, C., Păun, G., Pérez-Jiménez, M.J.: Uniform solutions to
SAT and Subset Sum by spiking neural P systems. Natural computing 8(4), 681 (2009)

12. Pan, L., Păun, G., Pérez-Jiménez, M.J.: Spiking neural P systems with neuron division and
budding. Science China Information Sciences 54, 1596–1607 (2011)

13. Pan, L., Paun, G., Pérez Jiménez, M.J.: Spiking neural P systems with neuron division and
budding. Proceedings of the Seventh Brainstorming Week on Membrane Computing, vol. II,
151-167. Sevilla, ETS de Ingeniería Informática, 2-6 de Febrero, 2009 (2009)

14. Paun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing.
Oxford University Press, Inc., USA (2010)

15. Rintanen, J.: Planning and SAT. Handbook of Satisfiability 185, 483–504 (2009)
16. Song, B., Li, K., Orellana-Martín, D., Pérez-Jiménez, M.J., Pérez-Hurtado, I.: A survey of

nature-inspired computing: Membrane computing. ACM Computing Surveys (CSUR) 54(1),
1–31 (2021)

17. Song, T., Luo, L., He, J., Chen, Z., Zhang, K.: Solving Subset Sum problems by time-free
spiking neural P systems. Applied Mathematics & Information Sciences 8(1), 327 (2014)

18. Song, T., Rodríguez-Patón, A., Zheng, P., Zeng, X.: Spiking neural P systems with colored
spikes. IEEE Transactions on Cognitive and Developmental Systems 10(4), 1106–1115 (2017)

19. Sosík, P.: P systems attacking hard problems beyond NP: a survey. Journal of Membrane
Computing 1, 198–208 (2019)

20. Wang, J., Hoogeboom, H.J., Pan, L.: Spiking neural P systems with neuron division. In:
Membrane Computing: 11th International Conference, CMC 2010, Jena, Germany, August
24-27, 2010. Revised Selected Papers 11. pp. 361–376. Springer (2011)

21. Xu, L., Jeavons, P.: Simple neural-like P systems for maximal independent set selection.
Neural Computation 25(6), 1642–1659 (2013)

22. Zhao, Y., Liu, X., Wang, W.: Spiking neural P systems with neuron division and dissolution.
PLoS One 11(9), e0162882 (2016)

23. Zhao, Y., Liu, Y., Liu, X., Sun, M., Qi, F., Zheng, Y.: Self-adapting spiking neural P systems
with refractory period and propagation delay. Information Sciences 589, 80–93 (2022)

Detecting Android Malware Using Spiking Neural P
Systems

Mihail-Iulian Ples,a*1, Marian Gheoghe2, Florentin Ipate1, and Gexiang Zhang3

1 Department of Computer Science, University of Bucharest, Bucharest, Romania
mihail-iulian.plesa@s.unibuc.ro

2 School of Electrical Engineering and Computer Science, University of Bradford, Bradford, UK
3 School of Automation, Chengdu University of Information Technology, Chengdu 610225, China

Abstract. Android is one of the most used operating systems for mobile platforms
and also the most attacked by malicious actors. Currently, malware detection
systems are based on signatures. The disadvantage of this approach is that the
attacker can easily modify the malware to avoid detection. Machine learning
algorithms can automatically analyze large datasets to detect patterns that can help
to classify new entries. For this reason, machine learning represents a possible
solution to the problem of malware detection. Spiking Neural P systems are third-
generation neural networks that are much more energy efficient than the current
ones. In this paper, we investigate the possibility of using Spiking Neural P systems
to detect malware on Android platforms. We trained a Spiking Neural P system
and several classic machine learning algorithms, among which an artificial neural
network, on the same Android malware dataset. We show through experiments that
the Spiking Neural P system can efficiently solve the malware detection problem
with much fewer training epochs than an artificial neural network and obtains
better performances than the other machine learning algorithms we studied.

Keywords: Malware detection · LSN P system · Information security

1 Introduction

Android is the most used mobile operating system installed on more than 75% of mobile
devices [20]. Given this large amount of market share, Android platforms are the primary
target for malicious actors. There are three basic steps taken by malware for infecting a
mobile platform: installation, activation and deploying the payload [35]. Currently, there
are two main approaches to detecting and analyzing malware: dynamic analysis and
static analysis. Dynamic analysis involves running the infected Android Package (APK)
in a controlled environment to evaluate the concrete actions taken by the malware. On
the other side, static analysis implies analyzing the APK without running it. The main
advantage of static analysis lies in the fact that it allows the creation of malware-specific
signatures that can be used to detect it [22]. Unlike signature-based malware detection,
machine learning algorithms can detect new malware by analyzing the data from either
static or dynamic analysis.

The field of machine learning (ML) experienced a strong advance in the last year.
In 2017 appeared the modern CNN architecture [15]. The model impressed the world

168 Mihail Plesa et al

with its capabilities and size being able to classify 1000 different image classes with an
error rate of only 15.3% [7]. Only five years later, OpenAI released ChatGPT, a large
language model with extensive capabilities [3].

However, current deep learning algorithms have large energy consumption [32]. One
reason why this happens is that the current deep learning algorithms are not inspired by
the way the human brain works [23]. Spiking neural P systems (SN P systems) represent
a possible solution to this problem [13]. SN P systems are neural networks inspired by
how the neural cells work and interact. Unlike current neural networks, the neurons from
an SN P system communicate using discrete spiking. In an SN P system, each neuron
has a number of firing rules. When the firing condition is met, the neuron will emit one
spike to all neurons with which it is connected. This raises the possibility to implement
neural networks that are energy efficient. In this paper, we analyze the possibility of
using the SN P system to detect malware on the Android platform. We compare an SN P
system with a classical artificial neural network (ANN) and show that the SN P system
is indeed more efficient. We also compare the SN P system with other classifiers e.g.
logistic regression, linear and non-linear Support Vector Machine (SVM), and decision
trees.

2 Related work and our contribution

In general, there are two main categories of machine learning algorithms used in malware
detection: supervised and unsupervised. Supervised learning requires a labeled dataset
used by the algorithm to learn how to classify new samples. On the other hand, the
purpose of unsupervised learning algorithms, which do not require any labeled data, is
to compute an approximate distribution of the dataset. In [17] the authors propose an ML
system that detects Android malware by analyzing the permission usage. To detect the
best classifier, they analyzed four different algorithms: AdaBoost, Naive Bayes, Decision
Trees, and SVM [10]. In [16] it is presented a random forest classifier to detect malware
based on more 377 features about Android APK. In [25] it is proposed a decision trees
approach that classifies samples as malware or benign based on the opcode frequency. In
[5] the authors presented DRACO, a machine-learning framework that detects Android
malware based on static and dynamic features. Another idea of combining dimensionality
reduction and a classifier for Android malware detection is presented in [29]. All of these
ideas were based on classical machine learning algorithms. There are also other more
recent methods for detecting Android malware using deep learning. In [26] the authors
proposed an artificial neural network that detects Android malware based on dynamic
features with more than 97% accuracy. The authors in [31] proposed MalNet, a deep
learning architecture for malware detection with automatic feature selection. The idea is
to treat the malware as a grayscale image and then use convolution neural networks for
classification. In [12] the authors used deep belief networks to detect malware based on
Application Programming Interface (API) calls of the APK.

There were also previous applications of SN P systems in machine learning [6]. In
[34], SN P systems were used to construct a spiking convolutional neural network. In
[19] a specific SN P system called DTN P system was used in medical image processing
[4]. In [33] the authors proposed a general classifier based on the SN P system and test

Detecting Android Malware Using Spiking Neural P Systems 169

it on the MNIST dataset [8]. Two comprehensive surveys on image processing using P
systems are presented in [9] and [30].

Although there was previous work that proposed new machine learning algorithms
based on the SN P system, from our knowledge, this is the first paper that studies a
real cybersecurity problem i.e. android malware detection with the SN P system. We
implement a concrete instantiation of the SN P system proposed by [33] and test it
against an Android malware dataset. We compare the results obtained by the SN P
system with results obtained by other machine learning algorithms e.g. artificial neural
networks, logistic regression, linear and non-linear SVM, and decision trees. We prove
experimentally that the SN P system classifier obtains better results than the other
algorithms with respect to the analyzed metrics. The paper is organized as follows: in
Sect. 3 we present the SN P system used to classify the malware i.e. the Layered Spiking
Neural P system, in Sect. 4 we present the experiments while Sect. 5 is left for the
conclusions and further directions of research.

3 Layered Spiking Neural P Systems

In this section we describe a concrete instance of an LSN P system described in [33].
The system is based on fuzzy values for which the following operations are defined
accordingly to [27]:

1. ∨ is the OR operator which returns the maximum of the inputs.
2. ⊕ is the addition operator which returns the sum of the inputs.
3. ⊗ is the multiplication operator which returns the product of the inputs.

Definition 1. A Layeblack Spiking Neural P system (LSN P system) is defined as the
following construct:

Π = ({a}, {σ1
p1 , · · ·σ

1
pk
, σ3
p1 , σ

5
p1}, {σ

2
r1 , · · ·σ

2
rn , σ

4
r1 , · · ·σ

4
rn}, syn, IN,OUT)

where:

1. The symbol a denotes a spike
2. σhrj = {whji, rhj } denotes a rule neuron where h is the layer label and:

(a) whji denotes the weight on the synapse that connects the neuron σhrj to the neuron
σh+1
pi . Here, whji = 1, ∀1 ≤ i ≤ k, 1 ≤ j ≤ n, h ∈ {2, 4}.

(b) rhj denotes a set of firing rules depending on the layer label:
i. For the second layer, r2j : E2 : aθj → aθj , where E2 = {θj ≥ 0} and
θj = (w1j ⊗ α1)⊕ (w2j ⊗ α2)⊕ · · · ⊕ (wkj ⊗ αk), 1 ≤ j ≤ n.

ii. For the fourth layer, r41 : E4
j /a

θj → a; dj , where E4
j = {θj ≥ o} where

the value of o is computed by the proposition neurons described below.
3. σhpi = {whij , rhi } denotes a proposition neuron where h is the layer label and:

(a) whij denotes the weight on the synapse that connects the neuron σhpi to the neuron
σh+1
rj . Depending on the layer label, there are the following values:
i. For the first layer,w1

ij are chosen randomly from the range (0, 1),∀1 ≤ i ≤ k,
1 ≤ j ≤ n.

170 Mihail Plesa et al

ii. For the third layer, w3
ij = 1, ∀1 ≤ i ≤ k, 1 ≤ j ≤ n.

(b) rhi denotes a set of firing rules. They can have the following form:
i. For the first layer, r1i : E1/aαi → aαi , where E1 = {αi ≥ 0}, ∀1 ≤ i ≤ k.
ii. For the third layer, r3 : E3/ao → o, where E3 = {o ≥ 0} and o =

θ1 ∨ θ2 ∨ · · · ∨ θn.
iii. For the fifth layer, there is no firing condition, the rule a → a is always

activated.

4. syn =

{(
σ1
pi, σ

2
rj

)
,
(
σ2
rj , σ

3
p1

)
,
(
σ3
p1, σ

4
rj

)
,
(
σ4
rjσ

5
p1

)
,∀1 ≤ i ≤ k, 1 ≤ j ≤ n

}
5. IN = {σ1

pi,∀1 ≤ i ≤ k}
6. OUT = {σ5

p1}

The purpose of the weights in an LSN P system is to adjust the connection between
two neurons. If neuron σpi has n spikes and the weight between σpi and σrj is w1

ij then
the neuron σrj will receive n × w1

ij spikes. The running steps of the system are the
following:

1. The input is encoded using the encoded scheme described in Sect. 3.1 and provided
to the input layer.

2. Each neuron in the input layer will send one spike to all of the neurons from the
hidden layer. The number of spikes received by a neuron from the hidden layer is the
weighted sum of the received spikes.

3. The neuron σ3
p1 will send to the output layer the maximum number of spikes received

from the hidden layer.
4. At each time step, one neuron corresponding to the maximum number of spikes will

emit one spike. In this way, we identify the classification result.

Fig. 1 shows the LSN P system used in this paper.

3.1 Input encoding and learning function

The encoding scheme proposed in [33] is inspired by the fact that various biological
phenomena that happen in the decision-making process involve nonlinear mixtures of
variables [24]. Let x be the input features vector of lengthm. The first step is to scale all
the elements of x into the range of (0, 1) using (1):

T (x) =
x− xmin

xmax − xmin
(1)

where xmax and xmin are the maximum and minimum of the elements of the vector x.
The second step is to encode the scaled input x using a 2nd-degree Taylor expansion

in m dimensions around zero as shown in Algorithm 1. Following the algorithm, the
number of neurons of the input layer is k = m(m+3)

2 .
The learning in an LSN P system is based on the Widrow-Hoff learning rule [28].

Let denote by t̃ the output of the system and by t the ground truth. LetW be the 2× n
matrix of weights. Updating the weights is done by repeating the Widrow-Hoff:

Detecting Android Malware Using Spiking Neural P Systems 171

E1/aα1 → aα1

σ1
p1

E1/aα2 → aα2

σ1
p2

E1/aαk → aαk

σ1
pk

E2/aθ1 → aθ1

σ2
r1

E2/aθ2 → aθ2

σ2
r2

E3/ao → aoσ3
p1

E4/aθ1 → a; 1
σ4
r1

E4/aθ2 → a; 2
σ4
r2

a→ aσ5
p1

w1
11 w1

12

w1
21 w1

22

w1
k1 w1

k2

1 1

1 1

1 1

· · ·Input layer

Hidden layer

Output layer

Fig. 1: LSN P system

Algorithm 1 The encoding algorithm
Input: x
Output: x

1: k1 =
(
1
m

)
2: for i = 1 i ≤ k1 i = i+ 1 do
3: x[i] = x[i]
4: end for
5: k = 0
6: for i = 1 i ≤ m i = i+ 1 do
7: for j = 1 i ≤ i j = j + 1 do
8: x[k1 + k] = x[i] · x[j]
9: k = k + 1
10: end for
11: end for

172 Mihail Plesa et al

W⇐W + η
(
t− t̃

)
α (2)

where η is the learning rate and α is the output of the encoding algorithm.
The learning rule will be applied for several training epochs until satisfactory accuracy

is obtained over the training set.

4 Experimental results

The experiments were performed on the Drebin-215 dataset [2]. Each sample in the
dataset is characterized by 215 features from the following categories:

1. API call signatures e.g. onServiceConnected, android.os.Binder, attachInterface, etc.
2. Manifest permission e.g. SEND SMS, READ PHONE STATE, RECEIVE SMS,

etc.
3. Intent e.g. android.intent.action.PACKAGE REPLACED,

android.intent.action.TIME SET, android.intent.action.BATTERY OKAY, etc.
4. Commands signature e.g. mount, remount, chown, etc.

The dataset is composed of 15036 samples of which 9476 are benign and 5560
are malware. For each experiment, the training set consists of 1000 samples collected
randomly from the entire dataset. The test set represents the rest of the samples.

There are many metrics to evaluate a classifier [11]. We begin by defining some
concepts that will be used to construct the metrics:

1. True positive (TP): Represents a sample that is malware and it is classified as malware
2. False positive (FP): Represents a sample that is benign but is classified as malware
3. True negative (TN): Represents a sample that is benign and is classified as benign
4. False negative (FN): Represents a sample that is malware and it is classified as

benign

In this paper, we use the following metrics to evaluate the classifiers:

1. Accuracy (Acc): Represents the ratio between the number of correctly classified
samples and the total number of samples:

Acc =
TP + TN

TP + TN + FP + FN
(3)

2. Error rate (Err): Represents the ratio between the number of incorrectly classified
samples and the total number of samples:

Err =
FP + FN

TP + TN + FP + FN
(4)

3. Precision (P): Represents the ratio between the number of samples correctly classified
as malware and the total number of samples classified as malware:

P =
TP

TP + FP
(5)

Detecting Android Malware Using Spiking Neural P Systems 173

4. Recall (R): Represents the ratio between the number of samples correctly classified
as malware and the total number of malware samples:

R =
TP

TP + FN
(6)

5. F1 score (F1): Represents the harmonic mean between the precision and recall:

F1 = 2 · P ·R
P +R

(7)

We first compare the LSN P system with a classifier based on an artificial neural
network (ANN) since both approaches involve a neural network. The LSN P system has
23435 neurons on the hidden layer so we construct an ANN with one single hidden layer
with 23435 neurons with ReLU activation function [1]. To train the ANN we used the
Adam optimizer with a learning rate of 0.001. Because the LSN P system was trained
over the entire dataset, we did not use batch training for the ANN. Fig. 2 shows the F1
score of the LSN P system and the ANN on the data during training with respect to the
epoch.

Table 1 summarizes the comparison between the LSN P system and the ANN-based
classifier. Although the LSN P system obtains slightly better performance with respect to
the metrics, the main difference between the two models is that the LSN P system uses
only 12 epochs for training, unlike the ANN which needs 146 epochs to be trained.

We also compare the LSN P system classifier with other classical classifiers: logistic
regression, linear and non-linear SVM, and decision trees [18,21,14]. Table 2 presents
the results. The LSN P system is 12× more efficient than the classical ANN. Also, of all
the algorithms used, the LSN P system achieves the highest accuracy. All the experiments
were made on an Apple Mac M1 Max platform with 10 cores and 32 GB of RAM using
the Python programming language.

Table 1: Comparison between LNS P system and ANN
Model Number of

epochs
Acc Err P R F1

LSN P sys-
tem

12 0.9930 0.0071 0.9939 0.9949 0.9944

ANN 146 0.9901 0.0099 0.9901 0.9944 0.9922

Table 2: Comparison between LNS P system and other classifiers

Model Accuracy Error Precision Recall F1
LSN P system 0.9930 0.0071 0.9939 0.9949 0.9944
Logistic
regression

0.9849 0.0150 0.9854 0.9904 0.9879

Linear SVM 0.9793 0.0206 0.9852 0.9814 0.9833
Non-linear
SVM

0.9872 0.0127 0.9861 0.9940 0.9900

Decision
Trees

0.9876 0.0123 0.9905 0.9898 0.9902

174 Mihail Plesa et al

(a) Accuracy of LSN P system with respect to
the training epoch

(b) Accuracy of ANN with respect to the
training epoch

Fig. 2: The F1 Score of LSN P system and ANN with respect to the training epoch

5 Conclusions and further directions of research

In this paper, we studied the possibility of detecting malware on Android platforms using
Spiking Neural P systems [13]. SN P systems are inspired by how biological neurons
work and interact. Unlike current deep learning approaches this type of neural network is
much more energy efficient. We prove experimentally that SN P systems obtain slightly
better accuracy than the ANN but with much fewer training epochs.

There are multiple further directions of research. The first one is to compare SN P
systems with other deep learning architectures e.g. Recurrent Neural Network (RNN),
Long Short-Term Memory (LSTM), etc. The second one is to analyze the confidence
of SN P systems compared to the confidence of classical ANNs. In this paper, we used
the model proposed in [33] which does not output the probability associated with each
classification. To analyze the confidence of the model, it will have to be modified to output
the probability as well. In this paper, we used a dataset composed of multiple manually
crafted features. One possible direction of research is to apply the SN P system to classify
malware directly from the opcode. Another direction of research is to implement the
LSN P system on dedicated neuromorphic hardware and to asses its energy consumption
efficiency.

Acknowledgements This researchwas supported by the EuropeanRegional Development
Fund, Competitiveness Operational Program 2014-2020 through project IDBC (code
SMIS 2014+: 121512).

References

1. Agarap, A.F.: Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375
(2018)

Detecting Android Malware Using Spiking Neural P Systems 175

2. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., Siemens, C.: Drebin: Effective
and explainable detection of android malware in your pocket. In: Ndss. vol. 14, pp. 23–26
(2014)

3. Azaria, A.: Chatgpt usage and limitations
4. Bao, T., Zhou, N., Lv, Z., Peng, H., Wang, J.: Sequential dynamic threshold neural P systems.

Journal of Membrane Computing 2(4), 255–268 (2020)
5. Bhandari, S., Gupta, R., Laxmi, V., Gaur, M.S., Zemmari, A., Anikeev, M.: DRACO: DRoid

analyst combo an android malware analysis framework. In: Proceedings of the 8th International
Conference on Security of Information and Networks. pp. 283–289 (2015)

6. Chen, Y., Chen, Y., Zhang, G., Paul, P., Wu, T., Zhang, X., Rong, H., Ma, X.: A Survey
of Learning Spiking Neural P systems and A Novel Instance. International Journal of
Unconventional Computing 16 (2021)

7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical
image database. In: 2009 IEEE conference on computer vision and pattern recognition. pp.
248–255. Ieee (2009)

8. Deng, L.: The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine 29(6), 141–142 (2012)

9. Díaz-Pernil, D., Gutiérrez-Naranjo, M.A., Peng, H.: Membrane computing and image process-
ing: a short survey. Journal of Membrane Computing 1(1), 58–73 (2019)

10. Géron, A.: Hands-on machine learning with scikit-learn and tensorflow: Concepts. Tools, and
Techniques to build intelligent systems (2017)

11. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)
12. Hou, S., Saas, A., Ye, Y., Chen, L.: Droiddelver: An android malware detection system using

deep belief network based on api call blocks. In: Web-Age Information Management: WAIM
2016 International Workshops, MWDA, SDMMW, and SemiBDMA, Nanchang, China, June
3-5, 2016, Revised Selected Papers 17. pp. 54–66. Springer (2016)

13. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta Informaticae
71(2-3), 279–308 (2006)

14. Kotsiantis, S.B.: Decision trees: a recent overview. Artificial Intelligence Review 39, 261–283
(2013)

15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. Communications of the ACM 60(6), 84–90 (2017)

16. Li, J., Wang, Z., Wang, T., Tang, J., Yang, Y., Zhou, Y.: An android malware detection system
based on feature fusion. Chinese Journal of Electronics 27(6), 1206–1213 (2018)

17. Li, J., Sun, L., Yan, Q., Li, Z., Srisa-An, W., Ye, H.: Significant permission identification
for machine-learning-based android malware detection. IEEE Transactions on Industrial
Informatics 14(7), 3216–3225 (2018)

18. Menard, S.: Applied logistic regression analysis. No. 106, Sage (2002)
19. Mi, S., Zhang, L., Peng, H., Wang, J.: Medical image fusion based on DTNP systems and

Laplacian pyramid. Journal of Membrane Computing 3(4), 284–295 (2021)
20. Naldi, M.: Concentration in the mobile operating systems market. arXiv preprint

arXiv:1605.04761 (2016)
21. Noble, W.S.: What is a support vector machine? Nature biotechnology 24(12), 1565–1567

(2006)
22. Pan, Y., Ge, X., Fang, C., Fan, Y.: A systematic literature review of android malware detection

using static analysis. IEEE Access 8, 116363–116379 (2020)
23. Raichle, M.E., Gusnard, D.A.: Appraising the brain’s energy budget. Proceedings of the

National Academy of Sciences 99(16), 10237–10239 (2002)
24. Rigotti, M., Barak, O., Warden, M.R., Wang, X.J., Daw, N.D., Miller, E.K., Fusi, S.: The

importance of mixed selectivity in complex cognitive tasks. Nature 497(7451), 585–590
(2013)

176 Mihail Plesa et al

25. Santos, I., Brezo, F., Ugarte-Pedrero, X., Bringas, P.G.: Opcode sequences as representation
of executables for data-mining-based unknown malware detection. information Sciences 231,
64–82 (2013)

26. Singh, L., Hofmann, M.: Dynamic behavior analysis of android applications for malware
detection. In: 2017 International Conference on Intelligent Communication and Computational
Techniques (ICCT). pp. 1–7. IEEE (2017)

27. Wang, J., Shi, P., Peng, H., Pérez-Jiménez, M.J., Wang, T.: Weighted fuzzy spiking neural p
systems. IEEE Transactions on Fuzzy Systems 21(2), 209–220 (2012)

28. Wang, Z.Q., Manry, M.T., Schiano, J.L.: LMS learning algorithms: misconceptions and new
results on converence. IEEE Transactions on Neural Networks 11(1), 47–56 (2000)

29. Wei, L., Luo, W., Weng, J., Zhong, Y., Zhang, X., Yan, Z.: Machine learning-based malicious
application detection of android. IEEE Access 5, 25591–25601 (2017)

30. Yahya, R.I., Shamsuddin, S.M., Yahya, S.I., Hasan, S., Al-Salibi, B., Al-Khafaji, G.: Image
segmentation using membrane computing: a literature survey. In: International Conference on
Bio-Inspired Computing: Theories and Applications. pp. 314–335. Springer (2016)

31. Yan, J., Qi, Y., Rao, Q.: Detecting malware with an ensemble method based on deep neural
network. Security and Communication Networks 2018 (2018)

32. Yang, T.J., Chen, Y.H., Emer, J., Sze, V.: A method to estimate the energy consumption of
deep neural networks. In: 2017 51st asilomar conference on signals, systems, and computers.
pp. 1916–1920. IEEE (2017)

33. Zhang, G., Zhang, X., Rong, H., Paul, P., Zhu, M., Neri, F., Ong, Y.S.: A layered spiking neural
system for classification problems. International journal of neural systems 32(08), 2250023
(2022)

34. Zhang, X., Liu, X.: Multiview Clustering of Adaptive Sparse Representation Based on Coupled
P Systems. Entropy 24(4), 568 (2022)

35. Zhou, Y., Jiang, X.: Dissecting android malware: Characterization and evolution. In: 2012
IEEE symposium on security and privacy. pp. 95–109. IEEE (2012)

On 2D P Colony Simulator

Daniel Valenta1 and Miroslav Langer2[0000−0001−5990−7780]

1 Institute of Computer Science, Silesian University in Opava, Czech Republic
daniel.valenta@fpf.slu.cz

2 Department of Applied Informatics, Faculty of Economics, VŠB-Technical University of
Ostrava, Czech Republic
miroslav.langer@vsb.cz

Abstract. This paper presents the whole process of a development of a software
system for a simulation of a theoretical computational model, the 2D P colony
with a dynamic environment support.

Keywords: Membrane computing · 2D P colony · Simulation software develop-
ment

1 Introduction

Membrane computing is a field of the computer science aiming to explore new computa-
tional models through the study of the biological cells, with a particular focus on the cell
membranes. These computational models are called Membrane systems and are inspired
by the structure and the functioning of the cells. Specifically, membrane computing
deals with distributed and parallel computational models that process multiple sets of
symbolic objects in a localized manner. One of the key features is the integration of
the evolutionary rules that allow the encapsulation of evolving objects into partitions
defined by the membranes. The communication between membranes and interaction
with the environment plays a key role in these processes. These computational models
are commonly referred to as P systems, named after Gheorghe Păun, the original creator
of the model (see [12,13]).

The application scope of P systems is extensive and diverse. For instance, in a study
by Xingqiao Deng et al., see [4], P systems were used to enhance the efficiency and
accuracy of reducer lubrication. Liang Huang et al. proposed a new variant of tissue P
system (TPS) to systematically optimize processes with multiple productive objectives,
as discussed in their work [9]. Wang Bo et al. addressed the detection of malicious URLs
using P systems, as described in their paper [1].
Additionally, P systems, specifically Optimization Spiking Neural P Systems (OSNPS),
were utilized for solving combinatorial optimization problems, as demonstrated in various
studies, such as in [5].

P Colony, as described in [10], is a very simple computational model derived from
P systems. It draws an inspiration from the collective behavior of ant colonies. This
computational model consists of a community of agents living in a shared environment,
represented by a multiset of objects. Each agent represents a membrane that contains a
specific number of objects, allowing for evolution into different objects or swapping them

178 Daniel Valenta and Miroslav Langer

with the environment. As research progressed on these simplified membrane systems, a
2-dimensional variant was introduced to explore their capabilities further. We call this
extended model a 2D P colony. [3]

Unlike P colonies, agents of a 2D P colony live in a two-dimensional environment,
and each agent is equipped with a set of programs consisting of a small number of simple
rules that allow it to act and move in the environment.

This paper focuses on the creation of a novel simulator for 2D P colonies. Our ongoing
research has led to new variants that include features such as a blackboard to simulate
the GWO (agent-based optimization algorithm) or a dynamic environment to simulate
ant colony optimization. As a result, we decided to develop a general-purpose simulator
that offers good performance, a parametrically customizable simulation interface, and
allows user-defined agent programs, as well as providing support for various modules
including dynamic environments.

2 2D P colony with the Evolving Environment

The main goal of our application is to support not only 2D P colony simulator, but also
allow the possibilities for the extensions such as support for dynamic environments,
blackboard and other modules future in point. In this paper we focus on a modified
definition of a 2D P colony with an evolving environment introduced in [11]. The only
difference between 2D P colony and 2D P colony with the evolving environment is in a
definition of an environment. The definition of the environment is only enriched by a set
of evolution rules R. The evolving environment also affects the derivation step. In the
definition of the 2D P colony, the changes in the environment can be done only by the
agents using the communication rules.

Definition 1. A 2D P colony with evolving environment, 2Dev P COL is a construct

Π = (V, e, Env,A1, . . . , Ad, f), d ≥ 1,

where:

– V is the alphabet of the colony. The elements of the alphabet are called objects.
– e ∈ V is the basic environmental object of the 2D P colony,
– Env is a triplet (m× n,wE , R), where:
• m× n,m, n ∈ N is the size of the environment.
• wE is the initial contents of the environment, it is a matrix of size m × n of
multiset of objects over V \ {e}.

• R is a set of evolution rules. Each rule is of the form S → T , where S is a
multiset over the objects over V \ {e}, and where T is a multiset over the objects
over V . We say, that the multiset S evolves into the multiset T .

– Ai, 1 ≤ i ≤ d, is an agent. The number d is called a degree of the colony. Each
agent is a construct Ai = (Oi, Pi, [o, p]) , 0 ≤ o ≤ m, 0 ≤ p ≤ n, where
• Oi is a multiset over V , it determines the initial state (contents) of the agent,
|Oi| = c, c ∈ N. The number c is called a capacity of the colony.

On 2D P Colony Simulator 179

• Pi = {pi,1, . . . , pi,li} , li ≥ 1, 1 ≤ i ≤ k is a finite set of programs for each
agent, where each program contains exactly h ∈ N rules, h is called a height.
Each rule is in the following form:

∗ a→ b, a, b ∈ V is an evolution rule,
∗ a↔ b, a, b ∈ V is a communication rule,
∗ [aq,r] → s, aq,r ∈ V, 0 ≤ q, r ≤ 2, s ∈ {⇐,⇒,⇑,⇓} is a motion rule.

[aq,r] is a matrix representing the vicinity of an agent.
• [o, p], 1 ≤ o ≤ m, 1 ≤ p ≤ n, is an initial position of agent Ai in the 2D
environment,

– f ∈ V is the final object of the colony.

A configuration of the 2Dev P COL is given by the state of the environment – the
matrix of typem× n of multisets of objects over V − {e}, the states of all agents – the
multisets of objects over V , and the coordinates of the agents. An initial configuration is
given by the definition of the 2Dev P colony.

A computational step of the 2Dev P COL is a transition between two consecutive
configurations. The computational step consists of four sub-steps. In the first sub-step,
a set of the applicable programs of the agents is determined, according to the current
configuration of the colony. In the second sub-step, for each agent, one program from this
set is chosen. For the chosen programs, it must hold, that there is no collision between
the communication rules of each two different programs. In the third sub-step, chosen
programs are executed, the values of the environment are updated.

The fourth sub-step is the evolution of the environment. Let Ei,j , 0 ≤ i ≤ m, 0 ≤
j ≤ n be a multiset representing the contents of the environment at the coordinates
[i, j]. Let Ai,j , 0 ≤ i ≤ m, 0 ≤ j ≤ n be a multiset of all the objects forming right
sides of the communication rules of the programs chosen in the second sub-step for
all the agents at the position [i, j]. Consider multisets S1

i,j , . . . S
oi,j
i,j , oi,j ∈ N such

that ∪oi,jk=0S
k
i,j = Ei,j \ Ai,j . Then the evolution of the environment in this particular

derivation step is provided by the application of the evolution rules Ski,j → T ∈ R.
Generally speaking, the objects of the environment, which were not changed by

the actions of the agents, are modified by the evolution rules of the environment. The
application of the rules of the agents has higher priority over evolution rules of the
environment.

A computation is non-deterministic and maximally parallel. The non-determinism
means that there is a uniform distribution on all the applicable rules. Hence, if an agent
can apply more rules, or there can be applied more rules of the environment in one
particular derivation step, only one rule is non-deterministically chosen, but each and
every rule can be applied with the same probability. The computation ends by halting,
when there is no agent that has an applicable program.

The result of the computation is the number of copies of the final object placed in the
environment at the end of the computation.

3 Analysis of System Requirements and Design of the Application

There are several key aspects to analyzing software development requirements in the
context of a 2D P colony simulation. First, we need to specify the functional requirements

180 Daniel Valenta and Miroslav Langer

that describe the specific behaviors and functions that the software should have in order
to accurately simulate the 2D P colony mode. This includes setting rules for agent
interactions, updating the environment, and evolving objects in the colony. We require
that each element is definable by the user.

Next, non-functional requirements such as expected performance, scalability, and the
ability to efficiently handle large-scale simulations need to be considered as well. This
will be achieved by using the standardized Matplotlib library for plotting the simulation.
[8]

In addition, the user requirements play a crucial role in designing an intuitive and
user-friendly interface to interact with the application, allowing users to configure various
parameters, visualize the simulation, and analyze the results of the simulation. The
Matplotlib library mentioned above allows us to plot agent positions in the environment,
including options such as zoom and so on. The configuration of the agent should be
viewed in a separate window if needed.

The aim is to create software that meets the real needs of users to use the software to
simulate any 2D P colony they define and to provide a reliable and efficient platform for
viewing the behavior of the model.

If we focus on specific functional requirements, we can see them in the use-case
diagram in Figure 1, and they include the option to define the environment, the agents in
it, the agent programs, and most importantly, the ability to run the simulation, adjust its
parameters, and see a visualization of the progress of the simulation.

Fig. 1: Use-case diagram of the simulator application.

On 2D P Colony Simulator 181

Let us describe the individual requirements more in detail:

– Define environment – option to define an environment of any sizem× n with any
content (multiset of objects).

– Add agent – Option to create any number of agents, each with its own programs and
initial configuration.
• Define programs – The program has to be defined using a file with an easy-to-
learn syntax, it has to be also universal and support all types of 2D P colony
rules. It has to be possible to define programs for each agent separately, but if
multiple agents use the same set of programs, a set of identical agents has to be
definable.

• Define initial configuration – For each agent, it has to be possible to define an
initial configuration – a multiset of internal objects and a default position in
the environment. The initial position within the environment may be generated
automatically if not specified.

– Run simulation – After initializing the environment and agents, it should be possible
to start and pause the simulation and also modify its parameters such as speed,
zooming in and out, display of visualized elements, and others.
• Configure parameters of simulation – Customizable parameters should be the

simulation speed (redrawing the configuration of all agents) in seconds, marking
of significant objects to be colored in the environment, simulation run time in
units of the number of programs applied by all agents or seconds.

• Visualize simulation — The application must have a graphical interface that
allows visualizing the objects such as the environment, the positions of agents
in it, the positions of important objects in the environment, and others (specified
by the user), with tools for changing perspective of view (zoom, move, etc.). In
addition, it should also have a text interface where additional information such
as current agent configurations and potential error messages will be available.

The non-functional requirements include in the first place the simulation speed, which
should be smooth enough. More formally, the response time for redrawing a configuration
of 100 agents with common programs in a 1000 × 1000 environment should take no
more than 1 second on an average computer with an Intel i5 series processor or higher,
unless the user adjusts the simulation speed to a slower speed deliberately using a relevant
parameter in the configuration.

The simulation has to be also reliable and stable, which means that the application
has to run without crashing and, if it does, appropriate error messages that guides the
user to correct the error in the application configuration and continue running without
problems has to be displayed.

Based on mentioned requirements, we have designed a software architecture for the
application that ensures convenient access to all functionalities and necessary to display
and control the elements. The software architecture of the application can be seen on
Figure 2.

For the development of the application, we choose Python 3.10 programming
language. Python is a great choice for simulator programming due to its simplicity,
extensive libraries, scientific computing capabilities, community support, and cross-
platform compatibility. In addition, the object-oriented nature of Python allows the

182 Daniel Valenta and Miroslav Langer

implementation of modular and reusable code, which facilitates the organization and
maintenance of simulator components.

Fig. 2: Software architecture of the application.

In the next section, we will focus on the specifics and implementation of the individual
components of the application.

4 Implementation

In this section, we describe the implementation of the application with a focus on
the specifics and implementation of the individual components of the application.
The simulator provides a computational tool for accurately replicating the behavior
and dynamics of 2D P colonies and provides a platform for studying their complex
processes. We discuss the technical details and strategies used during the process of
the implementation to ensure the accuracy of the simulator in reproducing the key
characteristics of 2D P colonies. With a focus on accuracy during implementation, we
aim to create a reliable tool that researchers and practitioners can use to analyze and
explore 2D P colony simulations in depth.

4.1 Input Parameters

The input parameters for the simulation, including the definitions of the environment,
agents, their programs, and visualizations, should be customizable by the user. To fulfill

On 2D P Colony Simulator 183

this requirement, we utilize a standard xslx file with a few sheets and a consistent structure,
which can be edited in any spreadsheet software.

For file processing within the application, we create the parsing method extractExcel
in which we utilize the openpyxl library for Python. This library enables fast and efficient
retrieval of the values from individual cells and allows further manipulation with those
values as variables.

The first sheet of this xlsx file, called Parameters, is reserved for the definition of the
basic parameters of the simulation. Here we can define the following:

– envRows and envColumns – integer values which define the size of the environment,
– envRules – the number of environmental rules which will be defined in a separate
xlsx file (see below),

– steps – integer value defining a termination criterion as the maximum number of
computational steps (performed by each agent).

– animationDelay – integer value defining the redraw speed (pause between new
iteration of computation) during visualization in seconds,

– JokerSymbols – block starting with keyword JokerSymbolsBegin and ending with
keyword JokerSymbolEnd allows the definition of a substitute character for alphabet
objects that share a similar meaning, such as objects O1, O2, ..., On (these objects
may express the same meaning but with varying “intensity”.) The substitute character
(e.g., “*”, “+”, etc.) is written in the second column, while the comma-separated
objects represented by this character are written in the third column on the same row
within this block.

– ColorSettings – block starting with keyword ColorSettingsBegin and ending with
keyword ColorSettingsEnd enables the definition of colors for significant objects
that should be displayed in the visualization. The object that should be displayed
is written in the second column, and its color is written in the third column on the
same row within this block.

To enhance clarity, we use the first column of the sheet mainly to define keywords that
are descriptive and facilitate user orientation. The actual values are defined in the second
column, or in the second and third columns if it is a definition block. In the case where
multiple values need to be entered, we use a comma as a separator. This structure is clear
and makes it easy to add additional parameters in the future.

The second sheet of the xlsx file, called Environment is used to define the environment.
Here we define the multisets of objects in the x and y coordinates, each cell can contain
several objects separated by a comma or can be empty (but the environmental symbol e
is still available for the agent). The application operates only with an environment of a
size determined by the variables envRows and envColumns, defined in the Parameters
sheet. An example of a simple environment definition with a size of 3× 3 and several
objects can be seen in Table 1.

The next sheet of xlsx file, called Environmental rules, is reserved for defining the
environmental rules. The syntax is as follows: in the first column, we enter the multiset
of objects S (see 2D P colony definition above, it is the left-hand side of the rule); in
the second column on the same row, we enter the rule type (currently only evolutionary
rules are supported, represented by the symbol >); and in the third column, we enter
the multiset of objects T (the right-hand side of the rule). The application only reads a

184 Daniel Valenta and Miroslav Langer

a,b,c d a
a b,c d
b b,d,e o,p

Table 1: 3× 3 environment definition

specific number of rules, defined in the Parameters sheet. An example of two simple
environment rule’s definition can be seen in Table 2.

a,b > a
d > c

Table 2: Two environmental rules definition

The last sheet of the xlsx file, called Agents, contains the definition of the agents.
Here the user can define individual agents in blocks starting with the keyword AgentBegin
and ending with the keyword AgentEnd, which is written in the first column of the sheet.
Within this block, one can specify the parameters of an agent in a sequential manner,
beginning with the definition of the name of the agent using the keyword ID, followed
by the initial contents (a multiset of objects) using the keyword content. Additionally,
user can specify the position of the agent in the environment on the i-axis using the
keyword start i and on the j-axis using the keyword start j. These parameters are entered
sequentially on the same line following the AgentBegin keyword, with each keyword-value
pair written in the subsequent columns. Next, within this block, user can also define
programs using a nested block starting with the keyword programBegin and ending with
the keyword programEnd. These keywords are defined in the second column of the sheet.
Inside the program block, we write individual rules starting with the keyword “rule” on
the same row within this block and continuing with defining the necessary configuration
for activating the rule in the third column, the rule type (evolutionary, motion, ...) in the
fourth column, and possibly the right side of the rule in the fifth column (for a motion
rule it is not necessary, just specify the direction l as left, r as right, u as up, or d as down
as the rule type). A simple example of an agent definition can be seen in Table 3.

AgentBegin ID Agent1 contents e,x start i 2 start j 2 copies 1
programBegin

rule e,a u
rule z > e

programEnd
AgentEnd

Table 3: Two environmental rules definition

On 2D P Colony Simulator 185

The definition of an agent named Agent1 is shown in Table 3. The agent contains
internal objects e and a, and the initial position in the environment at position 2, 2. Let us
also note the attribute called Copies, which allows the creation of multiple copies of the
same agent. In this case, the ID of the agent is generated using the index ID underscore
the copy number.

4.2 2D P colony Controller

The implementation of the class Agent involves the definition of the necessary attributes
and methods for representing and manipulating agents within the simulation system.
The class agent serves as a template for creating individual instances of the object
agent with specific properties and behaviors. Here is the list of the key attributes for the
implementation of the class agent:

– contents – each agent contain a multiset of objects limited by the capacity of a
particular 2D P colony,

– programs – each agent has its own set of programs that influence its behavior,
– coordinates – the current position of the agent in the environment (coordinates),
– vicinityLength – the environment of the agent that “sees”,
– colony – each agent is a subclass of the class Colony,
– jokerSymbols – allows the agent to work with substitute symbols if they are defined.

Each of these attributes is assigned to the agent during initialization based on the defined
values in the configuration file as described in the previous subsection.
The next key step is to implement methods that encapsulate the behavior and actions of
the agent. These methods include following:

– getVicinity – this method reads the contents of the environment at all neighboring
points around the agent, the method is mainly used in movement rules,

– getEnvironmentContent – this method reads the content of the environment at the
current position of the agent,

– getApplicablePrograms – this method loops through all agent programs defined in
the configuration file and creates a list of applicable programs corresponding to the
current configuration,

– applyProgram – this method randomly selects one of the applicable programs
(motion, evolving, or exchange) and applies it, which means that the agent (its
position in the environment or internal content) or environment (its contents in the
position where the agent is) configuration is changed.

Each of the agents is a subclass of the Colony class. This class groups the agents, takes
care of updating the environment, and controls the computation. The computation of the
colony is performed by calling the following methods:

– initComputationalStep – initializes the toConcat2env variable to collect the requests
of the agent to write to the environment via an exchange rule,

– agentsAct – this method, in random order (a simulation of a maximal parallelism
and non-determinisms), asks each agent to run one of the applicable programs.

186 Daniel Valenta and Miroslav Langer

– evolveEnvironmet – if defined, this method applies environment rules in all positions
where possible,

– add2environment – this method ensures communication with the environment in
case some of the agents uses the communication (exchange) rule, it ensures the
insertion of the original agent object into the environment based on its request.

It should be noted that the specific behavior of a 2D P colony strictly depends on the
specific definition specified via the input xlsx file.

4.3 GUI and Visualisation Tools

Graphical user interface (GUI) is an important part of the 2D P colony simulator. It serves
as a visual representation of the simulated environment, agents, and their interactions,
providing users with a clear and intuitive way to interact with the simulation. The GUI
enables users to monitor the behavior of 2D P colony with specific programs of the
agents, observe real-time changes, and analyze the outcomes of different scenarios.

As mentioned in the previous text, we used the Matplotlib library for Python to render
the simulation. This provides all the necessary tools to control the graphical interface. In
the following lines, we describe methods providing the data for rendering.

The key and first called method is initPopulation, which handles the initialization of
the graphical window and its components. It takes the input information (parameters)
about the size of the environment, position of the agent, and colors for significant elements
to be displayed in the visualization. This information is obtained from the class Colony,
the object in the controller of 2D P colony.
First, the Pyplot graphical window is created using the matplotlib library. The window
displays the environment and its objects, such as agents. The imshow method from the
matplotlib library is used for rendering, taking the environment size and agent positions as
input arguments. By default, the canvas (environment) is gray, and agents are represented
as the blue dots. Additional significant objects, for which colors are defined in the input
xlsx file, are rendered using a separate function called markInterest. This function iterates
through each position in the environment and, if it finds a significant object, colors its
position.

Control tools, like movement, panning, zooming, taking screenshots, etc., are part of
the pyplot canvas and do not require additional definitions. However, the application can
be extended with additional elements from the standard Tkinter library, such as labels
that provide information about the state of the simulation (running, current iteration, etc.)
or buttons for simulation control, implemented from there. Additional elements in the
application window are arranged using the grid geometry manager, which allows for
organizing them in a tabular structure. In our case, we only add the necessary element,
which is a label informing about the current program state.

To ensure user interaction during control simulation, the keypress events can be added
to define keyboard shortcuts. For instance, in our case, the c key is used to terminate the
application (sys.exit), and the p key pauses the simulation for 5 seconds (pyplot.pause(5)).
It is important to note that certain keys may be reserved by the matplotlib library, see its
documentation for more information [8].

On 2D P Colony Simulator 187

At this point, we have initialized the graphical window with all the necessary
components. The matplotlib canvas displays the environment with agents at their
respective coordinates, along with any other significant objects that have been assigned
specific colors.

For next updates (redraw to animate computation), it is not necessary to recreate
these elements, but rather update them. To achieve this, we defined a method called
updatePlot, which works as follows:

1. it retrieves the current information about the colony (environment and agent posi-
tions),

2. then it modifies the labels if needed, such as updating the iteration count label,
3. then it highlights significant symbols in the environment using the predefined colors,
4. and finally, it pauses the computation for a defined time period (as specified in the

input xlsx file) to allow the user to observe the changes.

By implementing the updatePlot method, we can efficiently update and display the
changes in real-time without recreating the entire plot. This method is called in the main
application loop while the calculation is in progress.

When the simulation is completed, we call the termination method, endOfVisualiza-
tion. This method updates the labels to display End of simulation and keeps the final
configuration displayed on the canvas until a user presses any key to exit. This allows
the user to review the last configuration before closing the visualization. The final GUI
example can be seen in Figure 3.

5 The Function Main, Flow and Execution

The function main of the program orchestrates the execution flow and serves as the
entry point for the application. The application is launched in the standard way using the
Python interpreter.

As we already mentioned, our application utilizes an input file containing parameters
for the 2D P colony and its simulation. This xlsx file needs to be loaded and parsed. The
loading process is handled by the openpyxl library in our extractExcel method, which
requires a specific file structure as described in the previous sections. This method takes
a file as input, which can be specified as an absolute path or defined as an input attribute
using sys.argv.

Once the file is parsed and all the values are loaded into the related variables of the
newly created Colony object, the GUI with the visualizer can be initialized by the method
initPopulation.

Afterwards, the main while loop of the application is initiated, within which the
following steps are executed until the termination criterion (e.g. maximum number of
steps) is reached:

1. firstly, the controller performs a computation step of the 2D P colony, during which
the state of agents and the environment is updated.

2. then, the output is passed to the GUI for visualization through the updatePlot method.
3. additional information about agent configuration and possible error messages can be

entered into the operating system’s text console (command line or terminal).

188 Daniel Valenta and Miroslav Langer

Fig. 3: The final GUI shows a 10× 7 environment with two agents and several significant
points highlighted in color.

On 2D P Colony Simulator 189

Finally, when the computation is complete, the state at the last computation step remains
in the GUI and the agent position information is written to the text console.

6 Conclusion

In this paper, we discussed the process of design and implementation of a 2D P colony
simulator, which is a very valuable tool for studying and analyzing the dynamics of this
model with specific programs of the agents. Through the use of agent-based modeling,
customizable input parameters, and an intuitive graphical user interface, the simulator
allows researchers and enthusiasts to explore the behavior and emergent properties of
2D P colonies in a simulated environment. Unlike our previous simulators, where the
entire colony was hard-coded in the source code, this parametrical approach allows us
to change the definition of a colony using only the parameters excel files. Recently, we
continue in our research of implementation of the ant colony optimization, using our
new simulator.

Acknowledgments

Research is partially supported by the Silesian University in Opava under the Student
Funding Plan, project SGS/11/2023

References

1. Bo, W., Fang, Z. B., Wei, L. I., Cheng, Z. F., & Hua, Z. X. (2021). Malicious URLs detection
based on a novel optimization algorithm. IEICE Transactions on Information and Systems,
104(4), 513–516. https://doi.org/10.1587/transinf.2020EDL8147. Released on J-STAGE April
01,. (2021). Online ISSN 1745–1361. Print ISSN, 0916–8532.

2. Buiu, C., et al. http://membranecomputing.net/
3. Cienciala, L., Ciencialová, L., Perdek, M. 2D P colonies. In: Csuhaj-Varjú E., Gheorghe M.,

Rozenberg G., Salomaa A., Vaszil Gy. (eds) Membrane Computing. CMC 2012. Lecture
Notes in Computer Science, vol 7762. Springer, Berlin, Heidelberg, pp. 161–172 (2012), DOI:
10.1007/978-3-642-36751-9_12

4. Deng, X., Dong, J., Wang, S., Luo, B., Feng, H., Zhang, G. Reducer lubrication optimization
with an optimization spiking neural P system, Information Sciences, Volume 604, 2022, Pages
28-44, ISSN 0020-0255, https://doi.org/10.1016/j.ins.2022.05.016.

5. Dong, J., Zhang, G., Luo, B., Yang, Q., Guo, D., Rong, H., Zhu, M., Zhou, K. A distributed
adaptive optimization spiking neural P system for approximately solving combinatorial opti-
mization problems, Information Sciences. Volume 596, 2022, Pages 1-14, ISSN 0020-0255,
https://doi.org/10.1016/j.ins.2022.03.007.

6. Florea, A. G., Buiu, C. . Development of a software simulator for P colonies. Applications in
robotics, International Journal of Unconventional Computing, Vol. 12, 2-3, pp. 189-205, 2016

7. Gheorghe, M., Stamatopoulou, I., Holcombe, M., Kefalas, P. Modelling Dynamically Organised
Colonies of Bio-entities. In: Banâtre, JP., Fradet, P., Giavitto, JL., Michel, O. (eds) Uncon-
ventional Programming Paradigms. UPP 2004. Lecture Notes in Computer Science, vol 3566.
Springer, Berlin, Heidelberg. DOI: 10.1007/11527800_17

190 Daniel Valenta and Miroslav Langer

8. Hunter, JD. Matplotlib: A 2D Graphics Environment. Computing in Science and Engineering,
vol. 9, no. 3, pp.

9. Huang, L., Sun, L., Wang, N., Jin, X. Multiobjective Optimization of Simulated Moving Bed by
Tissue P System, Chinese Journal of Chemical Engineering, Volume 15, Issue 5, 2007, Pages
683-690, ISSN 1004-9541, https://doi.org/10.1016/S1004-9541(07)60146-3.

10. Kelemen, J., Kelemenová, A., Păun, G. Preview of P colonies: A biochemically inspired
computing model. In: Workshop and Tutorial Proceedings. Ninth International Conference on
the Simulation and Synthesis of Living Systems (Alife IX). pp. 82–86. Boston, Massachusetts,
USA (September 12-15 2004)

11. Langer, M., Valenta, D., On Evolving Environment of 2D P Colonies – Ant Colony Simulation.
Journal of Membrane Computing. 2023; to appear

12. Păun, G. Computing with membranes. Journal of Computer and System Sciences 61, 2000,
pp. 108–143.

13. Păun, G. Introduction to membrane computing. Applications of Membrane Computing.
Springer BerlinHeidelberg, 2006.

Part III

Informal talks

SNP Systems with Astrocytes Producing Calcium: Power
and Efficiency

Bogdan Aman1,2 and Gabriel Ciobanu1,2

1 Alexandru Ioan Cuza University of Ias, i, Romania
2 Romanian Academy, Institute of Computer Science
{bogdan.aman,gabriel}@info.uaic.ro

Spiking neural P systems with astrocytes producing calcium [2] differ from the
standard spiking neural P systems in several ways: we have a new type of resources called
calcium unit alongside the standard spike, we have a new type of place called astrocyte
alongside the standard neurons and we also have dedicated synapses for communicating
calcium units alongside those used for communicating spikes.

σ1
ac

ac→ a
c2 → c2

τ1
c2

c2 → c2

c2 → c

σ2
a

ac2/c2 → c
ac→ a

Fig. 1: A spiking neural P system with as-
trocytes producing calcium generating all
even numbers without using either forget-
ting rules or delay in the evolution rules.
We use rectangles and ellipses to depict
the neurons and astrocytes, respectively. We
also use straight and snake like arrows to de-
pict the synapses that can send only spikes
and calcium units, respectively. The straight
arrow without a target leaving neuron σ1
indicates that this is an output neuron that
can send spikes into the environment.

Let N2(Π) be the set of numbers computed byΠ , where the subscript 2 denotes the
way in which the result of a computation is defined (namely the number of steps between
the first 2 spikes). Additionally, N2SNP

k
m,n denotes the families of all sets N2(Π)

computed by a spiking neural P system with astrocytes producing calcium, consisting of
at most m neurons, n astrocytes and k rules in every neuron or astrocyte. Note that if
one of the parameters k,m or n is not limited, then the symbol ∗ is used to substitute it.

Theorem 1 ([2]). N2SNP
4
∗,∗ = NRE.

The set of numbers accepted by the system Π is denoted by Nacc(Π), where the
subscript acc indicates that the system works in the accepting mode. We denote by
NaccSNP

k
m,n the families of all sets Nacc(Π) accepted by the spiking neural P system

with astrocytes producing calcium containing at most m neurons, n astrocytes and k
rules in every neuron or astrocyte of the system.

Theorem 2 ([2]). NaccSNP 4
∗,∗ = NRE.

Without delays or forgetting rules we have:

194 B. Aman and G. Ciobanu

Theorem 3 ([2]). N2SNP
4
∗,∗(delay0, forg0) = NRE.

Theorem 4 ([2]). NaccSNP 4
∗,∗(delay0, forg0) = NRE.

Non-deterministic spiking neural P systems with astrocytes producing calcium that
do not consider forgetting rules nor delay in the evolution rules, are powerful enough
to provide polynomial-time solutions to the subset sum problem [1]. We provided four
ways of constructing such a system: (i) semi-uniform: we constructed a spiking neural P
system with astrocytes producing calcium for each instance of the subset problem and
embedded the parameters into the constructed systems: in the rules and number of initial
resources, in the rules and in the number of used neurons and astrocytes (Figure 2), and
as number of resources (spikes and calcium units) and in the number of used neurons
and astrocytes ; (ii) uniform: we constructed a spiking neural P system with astrocytes
producing calcium for all instances of the same size of the subset problem and provided
the parameters as number of spikes and calcium units.

Fig. 2: A semi-uniform spiking
neural P system with astrocytes
producing calcium solving the
subset sum problem without us-
ing either forgetting rules or de-
lay in the evolution rules. The in-
stance of the problem is encoded
in the system in the rules and in
the number of used places (neu-
rons and astrocytes).

σ1
ac

ac→ a
ac→ c

τ1,1

c→ c

......... τ1,v1

c→ c
.........

σn
ac

ac→ a
ac→ c

τn,1

c→ c

......... τn,vn

c→ c

σout

cS → c

References

1. Aman, B.: Solving subset sum by spiking neural p systems with astrocytes producing calcium.
Natural Computing 22(1), 3–12 (2023). https://doi.org/10.1007/s11047-022-09900-7

2. Aman, B., Ciobanu, G.: Spiking neural p systems with astrocytes produc-
ing calcium. International Journal of Neural Systems 30(12), 2050066 (2020).
https://doi.org/10.1142/S0129065720500665

https://doi.org/10.1007/s11047-022-09900-7
https://doi.org/10.1142/S0129065720500665

Communication Mechanisms in Networks of Reaction
Systems

Erzsébet Csuhaj-Varjú and Pramod Kumar Sethy

Department of Algorithms and Their Applications
Faculty of Informatics, Eötvös Loránd University

Budapest, Hungary
{csuhaj,pksethy}@inf.elte.hu

In this talk, we discuss new variants of networks of reaction systems, with some new
constraints for communication. To build the models, we take ideas from networks of
reaction systems [1], communicating reaction systems with direct communication [3],
and parallel communicating grammar systems [2].

Reaction systems were introduced by A. Ehrenfeucht and G. Rozenberg as a formal
model of interactions between biochemical reactions. The main idea was to model the
behavior of biological systems in which a large number of individual reactions interact
with each other. Briefly, a reaction system consists of a finite set of objects that represent
chemicals, called reactants, and a finite set of reactions. Each reaction is a triplet of three
nonempty finite sets: the set of reactants, the set of inhibitors, and the set of products.
Let T be a set of reactants. A reaction is enabled for T and it can be performed if all
of its reactants are present in T and none of its inhibitors is in T . When the reaction is
executed, then the set of its reactants is replaced by the set of its products. All enabled
reactions are applied in parallel. The final set of products is the union of all single sets of
products that were obtained by the reactions that were enabled for T .

A network of communicating reaction systems with direct communication is a virtual
graph where in each node a reaction system and a finite set of reactants are located. The
reaction systems, also called the components of the network, perform reactions on the set
of reactants they have and after then send reactants or reactions to certain components
according to the given communication protocol. The components work in a synchronized
manner, governed by a global clock.

Two variants of networks of reaction systems with direct communication were
introduced and studied in [3]. The first model, the cdcR(p) system, communicates
products, that is every product of each reaction is associated with a set of target
components to where a copy of the product is communicated. In the case of the second
model, the cdcR(r) systems, target components are associated with the reaction itself. If
the reaction is successfully performed, then a copy of it is sent to every associated target
component. In [3] it was shown that these types of networks of reaction systems can be
represented by single reaction systems and demonstrated that cdcR(p) systems simulate
cdcR(r) systems.

These two types of systems communicate by command, i.e., after performing the
reaction, communication is compulsory. The newmodelswe introduce use communication
by request. The condition for communication is formulated by a positive reply to a
query, that is, by a logical constraint. These models are strongly motivated by parallel
communicating grammar systems [2].

196 Erzsébet Csuhaj-Varjú and Pramod Kumar Sethy

The first new model works as follows: before performing its enabled reactions,
each component requests some additional elements (reactants) from certain given
component(s). This action is called a query request. Once the component gets all
requested elements, then these reactants are added to the set of reactants of the reaction.
If the obtained reaction is enabled for the current set of reactants of the component, then
it is performed. If the query is not satisfied or the new reaction is not enabled, then the
reaction remains unchanged and is not allowed to be performed at that computation step.
These constructs are called communicating reaction systems communicating by requests
(cdcR(q) systems, in short). It can be shown that cdcR(q) systems can be represented by
single reaction systems and cdcR(p) systems simulate cdcR(q) systems.

The second new model, called communicating reaction system communicating by
partial requests (the cdcR(pq) system, in short), works analogously to cdcR(q) systems,
except that the query only checks the presence or absence of the reactant at the other
given component. The checked reactant from that node is not sent to the requesting node.
If the query is satisfied and the reaction is enabled, then it is performed, otherwise, it
cannot be performed at that computation step. Notice that this communication protocol
introduces some kind of synchronization in the joint work of the components. As in
the previous case, it can be shown that cdcR(pq) systems can be represented by single
reaction systems and its state sequence can be represented as a map of the state sequence
of a cdcR(p) system.

Finally, we propose some open problems for future research on the relationship
between communication command and communication by request in networks of reaction
systems.

References

1. Bottoni, P., Labella, A., Rozenberg, G.: Networks of reaction systems. Int. J. Found. Comput.
Sci. 31(1), 53–71 (2020)

2. Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems: A Grammatical
Approach to Distribution and Cooperation. Gordon and Breach, London (1994)

3. Csuhaj-Varjú, E., Sethy, P.K.: Communicating reaction systems with direct communication. In:
Freund, R., Ishdorj, T.O., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) Membrane Computing
-21st International Conference CMC 2020, Vienna, Austria, September 14-18, 2020, Revised
Selected Papers. Lecture Notes in Computer Science, vol. 12687, pp. 17–30. Springer (2021)

Author Index

Alhazov, Artiom, 7, 27, 43
Aman, Bogdan, 193
Andreu-Guzmán, José A., 143

Bera, Somnath, 56

Cienciala, Luděk, 67
Ciencialová, Lucie, 67
Ciobanu, Gabriel, 193
Civiero, Nicoló, 79
Csuhaj-Varjú, Erzsébet, 97, 195

Dinneen, Michael J., 67

Freund, Rudolf, 7, 27

Gallego, José Antonio Rodríguez, 27
Gheoghe, Marian, 167
Graciani, Carmen, 143

Henderson, Alec, 79
Hinze, Thomas, 79

Ipate, Florentin, 167
Ivanov, Sergiu, 7, 27, 43

Kuczik, Anna, 127

Langer, Miroslav, 177

Nagar, Atulya K., 56
Nicolescu, Radu, 67, 79

Orellana-Martín, David, 27, 43, 143

Paul, Prithwineel, 152
Ples,a, Mihail-Iulian, 167
Pérez-Jiménez, Mario J., 143

Ramírez-de-Arellano, Antonio, 27
Riscos-Núñez, Agustín, 143

Sempere, José M., 3
Sethy, Pramod Kumar, 195
Sosík, Petr, 152
Subramanian, K.G., 56

Valenta, Daniel, 177
Vaszil, György, 127
Verlan, Sergey, 97

Zandron, Claudio, 79
Zhang, Gexiang, 56, 167

	I Invited talks
	Towards an Online Simulator Exploring Non-Deterministic Networks of Cells
	Membrane computing: A wonderful framework for systems and computational biology

	II Regular papers
	Simple P systems with Prescribed Teams of Sets of Rules
	P Systems with Reactive Membranes
	Queens of the Hill
	Pure 2D Eilenberg P Systems
	Solving QUBO problems with cP systems
	Implementing Perceptrons by Means of Water Based Computing
	Conditional Uniport P Systems with Two Cells
	Simple Variants of Non-cooperative Polymorphic P Systems
	Randomly walking with PDP systems
	Solving the SAT problem using spiking neural P systems with coloured spikes and division rules
	Detecting Android Malware Using Spiking Neural P Systems
	On 2D P Colony Simulator

	III Informal talks
	SNP Systems with Astrocytes Producing Calcium: Power and Efficiency
	Communication Mechanisms in Networks of Reaction Systems

