Randomly walking with PDP systems

David Orellana-Martín, José A. Andreu-Guzmán, Carmen Graciani, Agustín Riscos Núñez, Mario J. Pérez-Jiménez

Research Group on Natural Computing Dept. of Computer Science and Artificial Intelligence Universidad de Sevilla, Seville, Spain

Opava, Czech Republic, August 28th, 2023

Membrane Computing

• Cell-like membrane systems (P systems)

- Cell-like membrane systems (P systems)
- Tissue-like membrane systems (Tissue P systems)

- Cell-like membrane systems (P systems)
- Tissue-like membrane systems (Tissue P systems)
- Spiking Neural P systems (SNP systems)

- Cell-like membrane systems (P systems)
- Tissue-like membrane systems (Tissue P systems)
- Spiking Neural P systems (SNP systems)
- P colonies

- Cell-like membrane systems (P systems)
- Tissue-like membrane systems (Tissue P systems)
- Spiking Neural P systems (SNP systems)
- P colonies
- Kernel P systems

- Cell-like membrane systems (P systems)
- Tissue-like membrane systems (Tissue P systems)
- Spiking Neural P systems (SNP systems)
- P colonies
- Kernel P systems
- PDP systems

- Cell-like membrane systems (P systems)
- Tissue-like membrane systems (Tissue P systems)
- Spiking Neural P systems (SNP systems)
- P colonies
- Kernel P systems
- PDP systems
- . . .

- Cell-like membrane systems (P systems)
- Tissue-like membrane systems (Tissue P systems)
- Spiking Neural P systems (SNP systems)
- P colonies
- Kernel P systems
- PDP systems
- . . .

Ecosystems

4 / 19

- Ecosystems
 - Bearded vultures

- Ecosystems
 - Bearded vultures
 - Pyrenean chamois

Ecosystems
 Bearded vultures
 Pyrenean chamois
 Zebra mussel

Ecosystems
 Bearded vultures
 Pyrenean chamois
 Zebra mussel

Giant panda

- Ecosystems
 - Bearded vultures
 - Pyrenean chamois
 - Zebra mussel
 - Giant panda
- Physics

- Ecosystems
 - Bearded vultures
 - Pyrenean chamois
 - Zebra mussel
 - Giant panda
- Physics

Stern-Gerlach

- Ecosystems
 - Bearded vultures
 - Pyrenean chamois
 - Zebra mussel
 - Giant panda
- Physics
 - Stern-Gerlach Uranium 238 decay

- Ecosystems
 - Bearded vultures
 - Pyrenean chamois
 - Zebra mussel
 - Giant panda
- Physics
 - Stern-Gerlach Uranium 238 decay Laser modelling

6 / 19

9 / 19

• Random process

- Random process
- *n*-dimensional

- Random process
- *n*-dimensional
- Interesting properties

- Random process
- *n*-dimensional
- Interesting properties
 - Pascal's triangle (1d)

- Random process
- *n*-dimensional
- Interesting properties
 - Pascal's triangle (1d)
 - Markov chain

- Random process
- *n*-dimensional
- Interesting properties
 - Pascal's triangle (1d)
 - Markov chain
 - Fractals (> 1d)

- Random process
- *n*-dimensional
- Interesting properties
 - Pascal's triangle (1d)
 - Markov chain
 - Fractals (> 1d)
 - Wiener process (Brownian motion)

• We want to model *n*-dimensional random walk processes

- We want to model *n*-dimensional random walk processes
- $\rightarrow\,$ We start from the beginning

- \bullet We want to model $\mathit{n}\textsc{-}dimensional$ random walk processes
- $\rightarrow\,$ We start from the beginning \rightarrow 1 and 2-dimensional

- $\mu = []_1$
- $\mathcal{M}_1 =$
- $\mathcal{R}_1 =$

•
$$\Pi = (\Gamma, \mu, \mathcal{M}_1, \mathcal{R}_1)$$

• $\Gamma = \{e_i \mid 0 \le i \le N - 1\}$

•
$$\mu = []_1$$

•
$$\mu = []_1$$

• $\mathcal{M}_1 = \{ e_i \mid 0 \le i \le N - 1 \}$
• $\mathcal{R}_1 =$

$$e_1, e_2, \ldots, e_N$$

1

$1\mathsf{D} \mathsf{ model}$

•
$$\Pi = (\Gamma, \mu, \mathcal{M}_1, \mathcal{R}_1)$$

• $\Gamma = \{e_i \mid 0 \le i \le N - 1\} \cup$
 $\{a_{i,j} \mid 0 \le i \le N - 1, 0 \le$
 $j \le n_0\}$
• $\mu = []_1$
• $\mathcal{M}_1 = \{e_i \mid 0 \le i \le N - 1\}$
• $\mathcal{R}_1 =$
 $[e_i \to a_{i,j}]_1$
 $M_1 = \{e_i \mid 0 \le i \le N - 1\}$
 $[e_i \to a_{i,j}]_1$
 $N \text{ particles}$
 $\eta = 1$
 $a_{1,\lfloor n_0/2 \rfloor}$
 $a_{2,\lfloor n_0/2 \rfloor}$
 \dots
 $a_{N,\lfloor n_0/2 \rfloor}$

Ť

1 🖲

$1\mathsf{D} \mathsf{ model}$

•
$$\Pi = (\Gamma, \mu, \mathcal{M}_1, \mathcal{R}_1)$$

• $\Gamma = \{e_i \mid 0 \le i \le N - 1\} \cup$
 $\{a_{i,j} \mid 0 \le i \le N - 1, 0 \le$
 $j \le n_0\}$
• $\mu = []_1$
• $\mathcal{M}_1 = \{e_i \mid 0 \le i \le N - 1\}$
• $\mathcal{R}_1 =$
 $[e_i \to a_{i,j}]_1 \xrightarrow{[a_{i,j}]_1} \xrightarrow{1/2} [a_{i,j+1}]_1$
 $[a_{i,j}]_1 \xrightarrow{1/2} [a_{i,j-1}]_1$
 $A_{i,\lfloor n_0/2 \rfloor - 1}$
 $A_{i,\lfloor n_0/2 \rfloor - 1}$

1

•
$$\Pi = (\Gamma, \mu, \mathcal{M}_{1}, \mathcal{R}_{1})$$
•
$$\Gamma = \{e_{i} \mid 0 \leq i \leq N-1\} \cup \{a_{i,j,k} \mid 0 \leq i \leq N-1, 0 \leq j \leq n_{0}-1, 0 \leq k \leq n_{1}-1\}$$
•
$$\mu = []_{1}$$
•
$$\mathcal{M}_{1} = \{e_{i} \mid 0 \leq i \leq N-1\}$$
•
$$\mathcal{R}_{1} = [e_{i} \rightarrow a_{i,j,k}]_{1} \begin{bmatrix} a_{i,j,k} \\ 1 \\ a_{i,j,k} \end{bmatrix}_{1} \frac{1/4}{2} \begin{bmatrix} a_{i,j-1,k} \\ 1 \\ a_{i,j,k} \end{bmatrix}_{1} \frac{1/4}{2} \begin{bmatrix} a_{i,j,k+1} \\ 1 \\ a_{i,j,k} \end{bmatrix}_{1} \frac{1/4}{2} \begin{bmatrix} a_{i,j,k+1} \\ 1 \\ a_{i,j,k-1} \end{bmatrix}$$
•
$$a_{i,j-1,k}$$

Instead of
$$\left[e_i \rightarrow a_{i,\lfloor n_0/2 \rfloor} \right]_1$$
, ?

 $14 \, / \, 19$

Instead of $[e_i \rightarrow a_{i,\lfloor n_0/2 \rfloor}]_1$, • Fixed position (initial cell, final cell)

Instead of $\left[e_i \rightarrow a_{i,\lfloor n_0/2 \rfloor} \right]_1$,

- Fixed position (initial cell, final cell)
- Experiment position

Instead of $\left[e_i \rightarrow a_{i,\lfloor n_0/2 \rfloor} \right]_1$,

- Fixed position (initial cell, final cell)
- Experiment position
- Random initialization

Simulation

1-dimensional simulation (10 particles, $n_0 = 100$, 1000 steps)

1 dimension, 20 particles, 1000 steps

1 dimension, 50 particles, 1000 steps

RENDAD OF

• Initial framework for experiments (Variants, Brownian motion...)

20 / 19

- Initial framework for experiments (Variants, Brownian motion...)
- Benchmark for performance and calibration of simulators

- Initial framework for experiments (Variants, Brownian motion...)
- Benchmark for performance and calibration of simulators
- Automatic generation

- Initial framework for experiments (Variants, Brownian motion...)
- Benchmark for performance and calibration of simulators
- Automatic generation
- Modelling of other processes

- Initial framework for experiments (Variants, Brownian motion...)
- Benchmark for performance and calibration of simulators
- Automatic generation
- Modelling of other processes

• . . .

Grazas 日ありがとう Köszönöm Z Takk 🏵 Zg Gràcies Merci Z ninya Skerrik asko ≝THANKYO 🛱 🕂 Gracias 🕁 MUI Баярлалаа KO