Solving the SAT problem using spiking neural P systems with coloured spikes and division rule

24th Conference on Membrane Computing, CMC 2023

Authors: Prithwineel Paul, Petr Sosík

Institute of Computer Science, Faculty of Philosophy and Science, Silesian University in Opava, Czech Republic

## Spiking neural P systems

- Neural-like P systems <sup>1</sup>;
- Third-generation neural networks;
- Spiking neural P systems with colored spikes <sup>2</sup>;
- Spiking neural P systems with neuron division and budding <sup>3</sup>;

<sup>2</sup>Song, T., Rodríguez-Patón, A., Zheng, P., Zeng, X.: Spiking neural P systems with colored spikes. IEEE Transactions on Cognitive and Developmental Systems 10(4), 1106–1115 (2017)

<sup>3</sup>Pan, L., Păun, G., Pérez-Jiménez, M.J.: Spiking neural P systems with neuron division and budding. Science China Information Sciences 54, 1596–1607 (2011)

<sup>&</sup>lt;sup>1</sup>Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta informaticae 71(2-3), 279–308 (2006)

# Spiking neural P system with coloured spikes and neuron division

#### Definition

- $\Pi = (S, H, syn, \sigma_1, \sigma_2, \dots, \sigma_m, R, in, out)$
- $m \ge 1$  (the number of neurons initially present in the system);
- S = {a<sub>1</sub>, a<sub>2</sub>,..., a<sub>g</sub>}, g ∈ N (the alphabet of spikes of different colours);
- *H* (the set containing labels of the neurons);
- syn ⊆ H × H (synapse dictionary between the neurons where (*i*, *i*) ∉ syn for *i* ∈ H);
- $\sigma_i = \langle n_1^i, n_2^i, \dots, n_g^i \rangle$ ,  $(1 \le i \le m)$  neuron  $\sigma_i$  contains initially  $n_i^i \ge 0$  spikes of type  $a_j$   $(1 \le j \le g)$ ;

#### Definition

- R (set of the rules of Π);
- Spiking rule:  $[E/a_1^{n_1}a_2^{n_2}\ldots a_g^{n_g} \rightarrow a_1^{p_1}a_2^{p_2}\ldots a_g^{p_g}; d]_i$  where  $i \in H$ , E is a regular expression over S;  $n_j \ge p_j \ge 0$   $(1 \le j \le g);$   $d \ge 0$  (delay);  $p_j > 0$  for at least one j,  $1 \le j \le g$ .
- Forgetting rule: [a<sub>1</sub><sup>t<sub>1</sub></sup> a<sub>2</sub><sup>t<sub>2</sub></sub> ... a<sub>n</sub><sup>t<sub>n</sub></sup> → λ]<sub>i</sub> where i ∈ H, and a<sub>1</sub><sup>t<sub>1</sub></sup> a<sub>2</sub><sup>t<sub>2</sub></sub> ... a<sub>n</sub><sup>t<sub>n</sub></sup> ∉ L(E) for each regular expression E associated with any spiking rule in neuron *i*;
  </sup></sup>
- Neuron division rule: [E]<sub>i</sub> → []<sub>j</sub> || []<sub>k</sub>; E is a regular expression over S; i, j, k ∈ H.
- *in* (input neuron); *out* (output neuron)

## A solution to the SAT problem

- SAT problem (or the Boolean satisfiability problem) <sup>4</sup> is a well-known NP-complete decision problem.
- $\gamma_{n,m} = C_1 \wedge C_2 \wedge \ldots \wedge C_m$
- $C_i$  (1  $\leq i \leq m$ ) (clauses).
- Each clause is a disjunction of literals of the form x<sub>j</sub> or ¬x<sub>j</sub>, where x<sub>j</sub> are logical variables, 1 ≤ j ≤ n.
- SAT(n, m) = class of SAT instances with n variables and m clauses;
- $\gamma_{n,m} \in SAT(n,m);$

<sup>&</sup>lt;sup>4</sup>Rintanen, J.: Planning and SAT. Handbook of Satisfiability 185, 483–504 (2009)

#### A solution to the SAT problem

 At first, we encode an instance *γ<sub>n,m</sub>* using spikes in the SNPS, and we send it to the input neuron.

$$code(\gamma_{n,m}) = a^{n+1}(\alpha_{1,1}\alpha_{1,2}\dots\alpha_{1,n})a_c(\alpha_{2,1}\alpha_{2,2}\dots\alpha_{2,n})a_c$$
$$\dots(\alpha_{m,1}\dots\alpha_{m,n})a_ca_f,$$
$$\alpha_{i,j} = \begin{cases} a_j, & \text{if } x_j \in C_i, \\ a'_j, & \text{if } \neg x_j \in C_i, \\ a, & \text{otherwise.} \end{cases}$$

- $a^{n+1}$  is added at the beginning to give the system a necessary initial period during which it generates an exponential workspace with  $O(2^n)$  neurons.
- The encoding of each clause is separated by *a<sub>c</sub>* and the end of the encoding is identified by *a<sub>f</sub>*.

#### Initial structure of the SNPS



 $code(\gamma_{n,m}) = a^{n+1}(\alpha_{1,1}\alpha_{1,2}...\alpha_{1,n})a_c...(\alpha_{m,1}\alpha_{m,2}...\alpha_{m,n})a_ca_f$ 

#### Structure of the SNPS at time t = 4



#### Structure of the SNPS at time t = n + 2



$$\mathbf{X} = \{(1) \ a_s a a / a \to a_s; \ (2) \ a_s a_c \to \lambda; \ (3) \ a_s a_c a / a_c a \to a_s; \ (4) \ a_s a_f \to a\}$$

### Comparison of the resources

| Resources      | Wang                 | Zhao                 | This paper     |
|----------------|----------------------|----------------------|----------------|
|                | et. al. <sup>5</sup> | et. al. <sup>6</sup> |                |
| Initial number | 11                   | 3 <i>n</i> + 5       | 9              |
| of neurons     |                      |                      |                |
| Initial number | 20                   | 2 <i>m</i> + 3       | 5              |
| of spikes      |                      |                      |                |
| Number of      | 10 <i>n</i> + 7      | 2 <sup>n</sup> + 11  | 6 <i>n</i> + 7 |
| neuron labels  |                      |                      |                |

<sup>5</sup>Wang, J., Hoogeboom, H.J., Pan, L.: Spiking neural P systems with neuron division. In: Membrane Computing: 11th International Conference, CMC 2010, Jena, Germany, August 24-27, 2010, pp. 361–376. Springer (2011)

<sup>6</sup>Zhao, Y., Liu, X., Wang, W.: Spiking neural P systems with neuron division and dissolution. PLoS One 11(9), e0162882 (2016)

| Size of synapse<br>dictionary                                | 6 <i>n</i> + 11                              | 5 <i>n</i> + 5                         | 2n + 12             |
|--------------------------------------------------------------|----------------------------------------------|----------------------------------------|---------------------|
| Number of rules                                              | 2 <i>n</i> <sup>2</sup> + 26 <i>n</i><br>+26 | $n2^n + \frac{1}{3}(4^n - 1) + 9n + 5$ | 8 <i>n</i> + 16     |
| Time complexity                                              | 4 <i>n</i> + <i>nm</i> + 5                   | 2n + m + 3                             | nm + n+<br>m + 5    |
| Number of neurons<br>generated throughout<br>the computation | 2 <sup>n</sup> + 8n                          | 2 <sup><i>n</i>+1</sup> – 2            | 2 <sup>n</sup> + 2n |

