Solving the SAT problem using spiking neural P systems with coloured spikes and division rule

24th Conference on Membrane Computing, CMC 2023
Authors: Prithwineel Paul, Petr Sosík
Institute of Computer Science, Faculty of Philosophy and Science, Silesian University in Opava, Czech Republic

Spiking neural P systems

- Neural-like P systems ${ }^{1}$;
- Third-generation neural networks;
- Spiking neural P systems with colored spikes ${ }^{2}$;
- Spiking neural P systems with neuron division and budding ${ }^{3}$;

[^0]
Spiking neural P system with coloured spikes and neuron division

Definition

- $\Pi=\left(S, H\right.$, syn, $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}, R$, in, out $)$
- $m \geq 1$ (the number of neurons initially present in the system);
- $S=\left\{a_{1}, a_{2}, \ldots, a_{g}\right\}, g \in \mathbb{N}$ (the alphabet of spikes of different colours);
- H (the set containing labels of the neurons);
- syn $\subseteq H \times H$ (synapse dictionary between the neurons where $(i, i) \notin$ syn for $i \in H)$;
- $\sigma_{i}=\left\langle n_{1}^{i}, n_{2}^{i}, \ldots, n_{g}^{i}\right\rangle,(1 \leq i \leq m)$ neuron σ_{i} contains initially $n_{j}^{i} \geq 0$ spikes of type $a_{j}(1 \leq j \leq g)$;

Definition

- R (set of the rules of Π);
- Spiking rule: $\left[E / a_{1}^{n_{1}} a_{2}^{n_{2}} \ldots a_{g}^{n_{g}} \rightarrow a_{1}^{p_{1}} a_{2}^{p_{2}} \ldots a_{g}^{p_{g}} ; d\right]_{i}$ where $i \in H, E$ is a regular expression over $S ; n_{j} \geq p_{j} \geq 0(1 \leq j \leq g)$; $d \geq 0$ (delay); $p_{j}>0$ for at least one $j, 1 \leq j \leq g$.
- Forgetting rule: $\left[a_{1}^{t_{1}} a_{2}^{t_{2}} \ldots a_{n}^{t_{n}} \rightarrow \lambda\right]_{i}$ where $i \in H$, and $a_{1}^{t_{1}} a_{2}^{t_{2}} \ldots a_{n}^{t_{n}} \notin L(E)$ for each regular expression E associated with any spiking rule in neuron i;
- Neuron division rule: $[E]_{i} \rightarrow[]_{j} \|[]_{k} ; E$ is a regular expression over $S ; i, j, k \in H$.
- in (input neuron); out (output neuron)

A solution to the SAT problem

- SAT problem (or the Boolean satisfiability problem) ${ }^{4}$ is a well-known NP-complete decision problem.
- $\gamma_{n, m}=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$
- $C_{i}(1 \leq i \leq m)$ (clauses).
- Each clause is a disjunction of literals of the form x_{j} or $\neg x_{j}$, where x_{j} are logical variables, $1 \leq j \leq n$.
- SAT $(n, m)=$ class of SAT instances with n variables and m clauses;
- $\gamma_{n, m} \in \operatorname{SAT}(n, m)$;

[^1]
A solution to the SAT problem

- At first, we encode an instance $\gamma_{n, m}$ using spikes in the SNPS, and we send it to the input neuron.

$$
\begin{aligned}
& \operatorname{code}\left(\gamma_{n, m}\right)=a^{n+1}\left(\alpha_{1,1} \alpha_{1,2} \ldots \alpha_{1, n}\right) a_{c}\left(\alpha_{2,1} \alpha_{2,2} \ldots \alpha_{2, n}\right) a_{c} \\
& \ldots\left(\alpha_{m, 1} \ldots \alpha_{m, n}\right) a_{c} a_{f}
\end{aligned}
$$

$$
\alpha_{i, j}= \begin{cases}a_{j}, & \text { if } x_{j} \in C_{i}, \\ a_{j}^{\prime}, & \text { if } \neg x_{j} \in C_{i}, \\ a, & \text { otherwise }\end{cases}
$$

A solution to the SAT problem

- a^{n+1} is added at the beginning to give the system a necessary initial period during which it generates an exponential workspace with $O\left(2^{n}\right)$ neurons.
- The encoding of each clause is separated by a_{c} and the end of the encoding is identified by a_{f}.

Initial structure of the SNPS

Structure of the SNPS at time $t=4$

Structure of the SNPS at time $t=n+2$

$\mathbf{X}=\left\{(1) a_{s} a a / a \rightarrow a_{s} ;\right.$ (2) $a_{s} a_{c} \rightarrow \lambda$; (3) $a_{s} a_{c} a / a_{c} a \rightarrow a_{s}$; (4) $\left.a_{s} a_{f} \rightarrow a\right\}$

Comparison of the resources

Resources	Wang et. al.		
Zhao	Et. al. 6	This paper	
of neurons of	11	$3 n+5$	9
Initial number of spikes	20	$2 m+3$	5
Number of neuron labels	$10 n+7$	$2^{n}+11$	$6 n+7$

${ }^{5}$ Wang, J., Hoogeboom, H.J., Pan, L.: Spiking neural P systems with neuron division. In: Membrane Computing: 11th International Conference, CMC 2010, Jena, Germany, August 24-27, 2010, pp. 361-376. Springer (2011)
${ }^{6}$ Zhao, Y., Liu, X., Wang, W.: Spiking neural P systems with neuron division and dissolution. PLoS One 11(9), e0162882 (2016)

Comparison of the resources

Size of synapse dictionary	$6 n+11$	$5 n+5$	$2 n+12$
Number of rules	$2 n^{2}+26 n$ +26	$n 2^{n}+\frac{1}{3}\left(4^{n}-1\right)$ $+9 n+5$	$8 n+16$
Time complexity	$4 n+n m+5$	$2 n+m+3$	$n m+n+$ $m+5$
Number of neurons generated throughout the computation	$2^{n}+8 n$	$2^{n+1}-2$	$2^{n}+2 n$

Thank You

[^0]: ${ }^{1}$ Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta informaticae 71(2-3), 279-308 (2006)
 ${ }^{2}$ Song, T., Rodríguez-Patón, A., Zheng, P., Zeng, X.: Spiking neural P systems with colored spikes. IEEE Transactions on Cognitive and Developmental Systems 10(4), 1106-1115 (2017)
 ${ }^{3}$ Pan, L., Păun, G., Pérez-Jiménez, M.J.: Spiking neural P systems with neuron division and budding. Science China Information Sciences 54, 1596-1607 (2011)

[^1]: ${ }^{4}$ Rintanen, J.: Planning and SAT. Handbook of Satisfiability 185, 483-504 (2009)

