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cP systems



Introduction

cP system = P system with compound terms1

1Radu Nicolescu and Alec Henderson. “An Introduction to cP Systems”. In:
Enjoying Natural Computing: Essays Dedicated to Mario de Jesús
Pérez-Jiménez on the Occasion of His 70th Birthday. Ed. by
Carmen Graciani et al. Cham: Springer International Publishing, 2018,
pp. 204–227. isbn: 978-3-030-00265-7. doi:
10.1007/978-3-030-00265-7_17.

3

https://doi.org/10.1007/978-3-030-00265-7_17


cP systems

Formally, a cP system is a construct

Π= (T ,A,O ,C ,R ,S ,s), where

T is the set of top-level cells at the start of the evolution of the
system; A is the alphabet of the system; O is the set of multisets
of initial objects in the top-level cells; C is the set of sets of
channel endpoint labels for inter-top-level cell communication
that can be found in each top-level cell; R is the set of rule-sets
for each top-level cell; S is the set of possible states of the
top-level cells; and s ∈ S is the starting state of every top-level
cell in the system.
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cP systems

top-cell 1 top-cell 2

top-cell 3 top-cell 4
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cP systems

top-cell
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cP systems

cell system corresponding terms
and compound terms

abb

top-cell

ab2
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cP systems

cell system corresponding terms
and compound terms

top-cell

abb
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d(ab2)
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cP systems

cell system corresponding terms
and compound terms

top-cell

abb

d
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d(ab2 e(b))
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cP systems

Rule

current-state lhs→ target-state rhs

States can be omitted

lhs and rhs contain terms, compound terms and variables

Example

lhs =+(aX )Y 2

10



cP systems

Rule

S +(aX )Y 2→ S ′+(XY )

Example

top-level cell: +(a2c)b2 — there is only one matching
X = ac , Y = b.

S +(aac)b2→ S ′+(acb)
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cP systems

Rule

S +(XY )→ S ′+(X )Y 2

Example
top-level cell: +(ab) — there are four sets of matching
X = a, Y = b; X = b, Y = a; X =λ, Y = ab; X = ab, Y =λ.

S +(ab)→ S ′+(a)b2

S +(ba)→ S ′+(b)a2

S +(ab)→ S ′+()a2b2

S +(ab)→ S ′+(ab)
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cP systems
Modes
min mode – one of matching rules is executed

max mode – ALL the rules can be applied

Rule

S +(XY )→ S ′+(X )Y 2

S +(ab)→ S ′+(a)b2

S +(ba)→ S ′+(b)a2

S +(ab)→ S ′+()a2b2

S +(ab)→ S ′+(ab)
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Rules

Rule

S +(_)−→max S ′

_ – anonymous variable
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Rules, inhibitors, promoters

Rule

S +()→ S ′+(X ) | − (X1)
S +(X )+(Y )→ S ′c(XY ) | ¬d(λ)

S +(X )+(Y )→ S ′c(XY ) | ¬(X =Y )
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cP systems and integers

For every integer a there is

i(x ,y), where x ,y ∈N0⇐⇒ a= x − y

For example:

i(1,4)⇐⇒−3= 1−4
i(5,8)⇐⇒−3= 5−8
i(8,11)⇐⇒−3= 8−11
i(0,3)⇐⇒−3= 0−3

Every representation i(x ,y) can be converted into canonical form:

i(x ,y)∼

(

i(x ′,0) for x ≥ y where x ′= x − y

i(0,y ′) for x < y where y ′= y − x
16



cP systems and integers

Addition
i(x ,y)+ i(x ′,y ′) = i(x+ x ′,y + y ′)

Subtraction

i(x ,y)− i(x ′,y ′) = i(x+ y ′,y + x ′)

Multiplication

i(x ,y) · i(x ′,y ′) = i(x · x ′+ x ′ · y ′,y · x ′+ x · y ′)
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cP systems and integers

i(3,2)   i (+(111) −(11)) = i (+(3) −(2))
i(1,4)   i (+(1) −(1111)) = i (+(1) −(4))
i(2,0)   i (+(11) −()) = i (+(2) −())
i(0,0)   i (+() −())
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cP systems and integers

Addition

−→min k (+(AC ) −(BD)) | i (+(A) −(B)) j (+(C ) −(D))

Subtraction

−→min k (+(AD) −(BC )) | i (+(A) −(B)) j (+(C ) −(D))
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cP systems and QUBO

QUBO problem
Quadratic Unconstrained Binary Optimisation is an NP-hard
mathematical optimization problem.
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cP systems and QUBO
QUBO problem
Integer version of the problem of minimizing a quadratic
objective function

x∗=min
~x
~xTQ ~x

where:

• ~x is a n-vector of binary (Boolean) variables
xi ∈ {0;1} ,0≤ i ≤ n−1

• n ∈N0 - the number of variables in ~x

• i , j ∈N0

• Q is an upper-triangular n×n matrix where
qi ,j ∈Z,0≤ i ≤ j ≤ n−1 are possibly non-zero coefficients
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cP systems and QUBO

QUBO problem
Formally, QUBO problems are of the form:

x∗=min
~x

∑

i≤j
xiqi ,jxj , where xi ,xj ∈ {0,1}

5x2
0 −7x

2
1 + x2

2 −2x0x1+ x1x2 ? (0,1,1)
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cP systems and QUBO

We developed a cP system that finds minimal value of a QUBO
in three phases of computation.

1. In the first phase, all possible values assignment is generated.

2. The second phase is devoted to generating of all
polynomials.

3. In the third phase, related coefficients are added together to
evaluate potential solutions for the assignments produced
from phases 1 and 2.
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cP systems and QUBO

Input:

• For every variable xi storing value yi ∈ {0,1} there is complex
object

a
�

in(i)val(y ′i )
�

where y ′i ∈ {λ,1}.

• For every coefficient qi ,j there is complex object

q (in1(i)in2(j)val(+(x) −(y))) where qi ,j = x − y .

• Two counters (counter-like objects): C1(λ),C2(n).

• Empty list of values of variables: l(C1(λ)) with counter
C1(λ) inside.
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cP systems and QUBO

S1 C2(1X )−→min S2 v(λ)v(1)C2(X ) (1)

Skin membrane contains complex object C2(n) – n= 1n

Unified rule:

S1 C2(11n−1)−→min S2 v(λ)v(1)C2(1n−1)

By the execution of the rule (1), two complex objects - v(λ) and
v(1) are generated and the number of 1s inside C2() is decreased
by one.
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cP systems and QUBO

S2 −→max S1 l (a(in(X )val(Y ))C1(X1)Z ) | l (C1(X )Z )

| v(Y )

1. round –
S2 −→max S1 l (a(in(λ)val(λ))C1(1)λ) | l (C1(λ)λ)

| v(λ)
S2 −→max S1 l (a(in(λ)val(1))C1(1)Z ) | l (C1(λ)λ)

| v(1)

1. x0 = 0 2. x0 = 1
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cP systems and QUBO

S2 −→max S1 l (a(in(X )val(Y ))C1(X1)Z ) | l (C1(X )Z )

| v(Y )

2. round – for a(in(λ)val(λ)) there are two rules
S2 −→max S1 l (a(in(1)val(λ))C1(1)a(in(λ)val(λ)))

| l (C1(λ)a(in(λ)val(λ)))

| v(λ)
S2 −→max S1 l (a(in(1)val(1))C1(1)a(in(λ)val(λ)))

| l (C1(λ)a(in(λ)val(λ)))

| v(1)
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cP systems and QUBO

S2 l(_) −→max S1

S2 v(_) −→max S1

In the same step all l() and v() that serve as promoters are
erased.
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cP systems and QUBO

The second phase
The idea of the second phase is to generate objects p(), which
will contain representatives of quadratic elements that will be
multiplied by the coefficients of one (say the i-th) row of the
matrix Q. However, if the value of the variable xi is zero, the
generation of the row is omitted since its value will be zero.
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cP systems and QUBO

~x = (1,1,1) — m() will contain the following objects:

p(w(λ) a(in(λ)val(1)) a(in(1)val(1)) a(in(11)val(1)) )

p(w(1) a(in(1)val(1)) a(in(11)val(1)) )

p(w(11) a(in(11)val(1)) )

x0 x0 x1 x2

x1 x1 x2

x2 x2
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cP systems and QUBO

~x = (1,0,1) — m() will contain the following objects:

p(w(λ) a(in(λ)val(1)) a(in(1)val(λ)) a(in(11)val(1)) )

p(w(1) )

p(w(11) a(in(11)val(1)) )

x0 x0 x1 x2

x1 = 0 x1 x2

x2 x2
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cP systems and QUBO

The third phase
In the third phase, for each combination of non-zero values of
xixj , we will add the value of the coefficient qij to the result in
the object l(). After that we convert all values to canonical
form. If there is at least one negative number we search for the
maximum of negative numbers, if there is no negative number
we search for the minimum of positive numbers (and zero).
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cP systems and QUBO

adding the number qXY if both xX and xY are 1

S4 l (r (+(U ′) −(V ′))p (w(X )a(in(Y )val(1))Z )Z ′C1(X ))

−→max S4 l (r (+(UU ′) −(VV ′))p (w(X )Z )Z ′C1(X ))

| q (in1(X )in2(Y )val(+(U) −(V )))
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cP systems and QUBO

S4 l (p (w(X )a(in(Y )val())Z )Z ′C1(X ))

−→max S4 l (p (w(X )Z )Z ′C1(X ))

| q (in1(X )in2(Y )val(Z ′′))
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cP systems and QUBO

Normalisation:

S5 l(r(+(XY ) −(Y ))_) −→max S6 l(r(+(X ) −(λ))_)

S5 l(r(+(X ) −(XY ))_) −→max S6 l(r(+(λ) −(Y ))_)
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cP systems and QUBO

Finding maximum of negative part of r()

S7 −→min SF res(val(+(λ) −(X ))Z )

| l(r(+(λ) −(X ))Z )

¬l(r(+(λ) −(X1Y ))_)
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cP systems and QUBO

To find a minimum of positive and zero values we need to add
one to the content of +() so the value of each r() is at least one.
Then we find a minimum of positive parts of r()s.

S8 l(r(+(X ) −(λ))Z ) −→max S9 l(r(+(X1) −(λ))Z )

S9 −→min SF res(val(+(X ) −(λ))Z )

| l(r(+(1X ) −(λ))Z )

¬(X =YW ) l(r(+(Y ) −(λ))_)
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Questions? Comments?

Thank you for your attention!
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