cP systems and QUBO

24th Conference on Membrane Computing

Lucie Ciencialová ${ }^{1}$, Michael Dinneen ${ }^{2}$,
Luděk Cienciala ${ }^{1}$, Radu Nicolescu ${ }^{2}$
August 29, 2023
1 Institute of Computer Science, Silesian University in Opava, Czech Republic Institute of Computer Science and Research Institute of the IT4Innovations Centre of Excellence, Silesian University in Opava, Czech Republic lucie.ciencialova@fpf.slu.cz

2 Department of Computer Science, University of Auckland

Outline

cP systems

- Concept
- Rules
- Computation

QUBO and cP systems

- QUBO
- Simulation

Conclusion

cP systems

Introduction

$c P$ system $=P$ system with compound terms ${ }^{1}$

${ }^{1}$ Radu Nicolescu and Alec Henderson. "An Introduction to cP Systems". In: Enjoying Natural Computing: Essays Dedicated to Mario de Jesús Pérez-Jiménez on the Occasion of His 70th Birthday. Ed. by Carmen Graciani et al. Cham: Springer International Publishing, 2018, pp. 204-227. isbn: 978-3-030-00265-7. doi:
10.1007/978-3-030-00265-7_17.

cP systems

Formally, a cP system is a construct

$$
\Pi=(T, A, O, C, R, S, \bar{s}), \text { where }
$$

T is the set of top-level cells at the start of the evolution of the system; A is the alphabet of the system; O is the set of multisets of initial objects in the top-level cells; C is the set of sets of channel endpoint labels for inter-top-level cell communication that can be found in each top-level cell; R is the set of rule-sets for each top-level cell; S is the set of possible states of the top-level cells; and $\bar{s} \in S$ is the starting state of every top-level cell in the system.

cP systems

cP systems

cP systems

cell system	corresponding terms and compound terms
top-cell	$a b b$

cP systems

$$
\begin{array}{ll}
\text { cell system } & \begin{array}{c}
\text { corresponding terms } \\
\text { and compound terms }
\end{array}
\end{array}
$$

top-cell

$$
d\left(a b^{2}\right)
$$

cP systems

top-cell

$$
d\left(a b^{2} e(b)\right)
$$

cP systems

Rule

current-state lhs \rightarrow target-state rhs

States can be omitted
Ihs and rhs contain terms, compound terms and variables

Example

$$
\text { Ihs }=+(a X) Y^{2}
$$

cP systems

Rule

$$
S+(a X) Y^{2} \rightarrow S^{\prime}+(X Y)
$$

Example

 top-level cell: $+\left(a^{2} c\right) b^{2}$ - there is only one matching $X=a c, Y=b$.$$
S+(a a c) b^{2} \rightarrow S^{\prime}+(a c b)
$$

cP systems

Rule

$$
S+(X Y) \rightarrow S^{\prime}+(X) Y^{2}
$$

Example

top-level cell: $+(a b)$ - there are four sets of matching

$$
X=a, \quad Y=b ; \quad X=b, Y=a ; \quad X=\lambda, \quad Y=a b ; \quad X=a b, \quad Y=\lambda
$$

$S+(a b) \rightarrow S^{\prime}+(a) b^{2}$
$S+(b a) \rightarrow S^{\prime}+(b) a^{2}$
$S+(a b) \rightarrow S^{\prime}+() a^{2} b^{2}$
$S+(a b) \rightarrow S^{\prime}+(a b)$

cP systems

Modes

min mode - one of matching rules is executed max mode - ALL the rules can be applied

Rule

$$
S+(X Y) \rightarrow S^{\prime}+(X) Y^{2}
$$

$$
\begin{aligned}
& S+(a b) \rightarrow S^{\prime}+(a) b^{2} \\
& S+(b a) \rightarrow S^{\prime}+(b) a^{2} \\
& S+(a b) \rightarrow S^{\prime}+() a^{2} b^{2} \\
& S+(a b) \rightarrow S^{\prime}+(a b)
\end{aligned}
$$

Rules

Rule

$$
S+\left(_\right) \longrightarrow_{\max } S^{\prime}
$$

_ - anonymous variable

Rules, inhibitors, promoters

Rule

$$
\begin{gathered}
S+() \rightarrow S^{\prime}+(X) \mid-(X 1) \\
S+(X)+(Y) \rightarrow S^{\prime} c(X Y) \mid \neg d(\lambda) \\
S+(X)+(Y) \rightarrow S^{\prime} c(X Y) \mid \neg(X=Y)
\end{gathered}
$$

cP systems and integers

For every integer a there is

$$
i(x, y), \text { where } x, y \in \mathbb{N}_{0} \Longleftrightarrow a=x-y
$$

For example:
$i(1,4) \Longleftrightarrow-3=1-4$
$i(5,8) \Longleftrightarrow-3=5-8$
$i(8,11) \Longleftrightarrow-3=8-11$
$i(0,3) \Longleftrightarrow-3=0-3$
Every representation $i(x, y)$ can be converted into canonical form:

$$
i(x, y) \sim\left\{\begin{array}{lll}
i\left(x^{\prime}, 0\right) & \text { for } x \geq y & \text { where } x^{\prime}=x-y \\
i\left(0, y^{\prime}\right) & \text { for } x<y & \text { where } y^{\prime}=y-x
\end{array}\right.
$$

cP systems and integers

Addition

$$
i(x, y)+i\left(x^{\prime}, y^{\prime}\right)=i\left(x+x^{\prime}, y+y^{\prime}\right)
$$

Subtraction

$$
i(x, y)-i\left(x^{\prime}, y^{\prime}\right)=i\left(x+y^{\prime}, y+x^{\prime}\right)
$$

Multiplication

$$
i(x, y) \cdot i\left(x^{\prime}, y^{\prime}\right)=i\left(x \cdot x^{\prime}+x^{\prime} \cdot y^{\prime}, y \cdot x^{\prime}+x \cdot y^{\prime}\right)
$$

cP systems and integers

$$
\left.\left.\begin{array}{l}
i(3,2) ~ \rightsquigarrow \\
i(1,4) \\
\rightsquigarrow \\
i(2,0) \\
\hdashline(+(111)-(11))=i(+(3)-(2)) \\
i(0,0)
\end{array}\right) \quad i(+(11)-())=i(+(2)-())\right)
$$

cP systems and integers

Addition

$$
\longrightarrow \min k(+(A C)-(B D)) \mid i(+(A)-(B)) j(+(C)-(D))
$$

Subtraction

$$
\longrightarrow \min k(+(A D)-(B C)) \mid i(+(A)-(B)) j(+(C)-(D))
$$

QUBO problem

Quadratic Unconstrained Binary Optimisation is an NP-hard mathematical optimization problem.

cP systems and QUBO

QUBO problem

Integer version of the problem of minimizing a quadratic objective function

$$
x^{*}=\min _{\vec{x}} \vec{x}^{T} Q \vec{x}
$$

where:

- \vec{x} is a n-vector of binary (Boolean) variables

$$
x_{i} \in\{0 ; 1\}, 0 \leq i \leq n-1
$$

- $n \in \mathbb{N}_{0}$ - the number of variables in \vec{x}
- $i, j \in \mathbb{N}_{0}$
- Q is an upper-triangular $n \times n$ matrix where $q_{i, j} \in \mathbb{Z}, 0 \leq i \leq j \leq n-1$ are possibly non-zero coefficients

cP systems and QUBO

QUBO problem

Formally, QUBO problems are of the form:

$$
x^{*}=\min _{\vec{x}} \sum_{i \leq j} x_{i} q_{i, j} x_{j}, \quad \text { where } x_{i}, x_{j} \in\{0,1\}
$$

$$
5 x_{0}^{2}-7 x_{1}^{2}+x_{2}^{2}-2 x_{0} x_{1}+x_{1} x_{2} \quad ? \quad(0,1,1)
$$

cP systems and QUBO

We developed a cP system that finds minimal value of a QUBO in three phases of computation.

1. In the first phase, all possible values assignment is generated.
2. The second phase is devoted to generating of all polynomials.
3. In the third phase, related coefficients are added together to evaluate potential solutions for the assignments produced from phases 1 and 2.

cP systems and QUBO

Input:

- For every variable x_{i} storing value $y_{i} \in\{0,1\}$ there is complex object

$$
a\left(\text { in }(i) \operatorname{val}\left(y_{i}^{\prime}\right)\right) \text { where } y_{i}^{\prime} \in\{\lambda, 1\}
$$

- For every coefficient $q_{i, j}$ there is complex object

$$
q(i n 1(i) \operatorname{in2}(j) \operatorname{val}(+(x)-(y))) \text { where } q_{i, j}=x-y
$$

- Two counters (counter-like objects): $C_{1}(\lambda), C_{2}(n)$.
- Empty list of values of variables: $I\left(C_{1}(\lambda)\right)$ with counter $C_{1}(\lambda)$ inside.

cP systems and QUBO

$$
\begin{equation*}
S_{1} \quad C_{2}(1 X) \longrightarrow_{\min } S_{2} \quad v(\lambda) v(1) C_{2}(X) \tag{1}
\end{equation*}
$$

Skin membrane contains complex object $C_{2}(n)-n=1^{n}$
Unified rule:
$S_{1} \quad C_{2}\left(11^{n-1}\right) \longrightarrow{ }_{\text {min }} S_{2} \quad v(\lambda) v(1) C_{2}\left(1^{n-1}\right)$
By the execution of the rule (1), two complex objects $-v(\lambda)$ and $v(1)$ are generated and the number of 1 s inside $C_{2}()$ is decreased by one.

cP systems and QUBO

$$
\begin{aligned}
S_{2} \longrightarrow_{\max } S_{1} \quad I\left(a(i n(X) \operatorname{val}(Y)) C_{1}(X 1) Z\right) & \mid I\left(C_{1}(X) Z\right) \\
& \mid v(Y)
\end{aligned}
$$

1. round -

$$
\begin{array}{llll}
S_{2} \longrightarrow_{\max } S_{1} \quad I\left(\operatorname{aa}(\operatorname{in}(\lambda) v a l(\lambda)) C_{1}(1) \lambda\right) & I\left(C_{1}(\lambda) \lambda\right) \\
& & & \mid v(\lambda) \\
S_{2} \longrightarrow_{\max } S_{1} & I\left(\operatorname{ar}(\operatorname{in}(\lambda) v a l(1)) C_{1}(1) Z\right) & I\left(C_{1}(\lambda) \lambda\right) \\
& & \mid v(1)
\end{array}
$$

$\begin{array}{ll}\text { 1. } x_{0}=0 & \text { 2. } x_{0}=1\end{array}$

cP systems and QUBO

$S_{2} \longrightarrow_{\max } S_{1} \quad I\left(a(\right.$ in $\left.(X) \operatorname{val}(Y)) C_{1}(X 1) Z\right) \quad \mid I\left(C_{1}(X) Z\right)$

$$
\mid v(Y)
$$

2. round - for $a(i n(\lambda) v a l(\lambda))$ there are two rules

$$
\begin{aligned}
& S_{2} \longrightarrow_{\max } S_{1} \quad I\left(a(i n(1) v a l(\lambda)) C_{1}(1) a(i n(\lambda) v a l(\lambda))\right) \\
& \text { | } I\left(C_{1}(\lambda) a(i n(\lambda) \operatorname{val}(\lambda))\right) \\
& \mid v(\lambda) \\
& S_{2} \longrightarrow_{\max } S_{1} \quad I\left(a(i n(1) v a l(1)) C_{1}(1) a(i n(\lambda) v a l(\lambda))\right) \\
& \text { | } I\left(C_{1}(\lambda) a(i n(\lambda) v a l(\lambda))\right) \\
& \mid v(1)
\end{aligned}
$$

cP systems and QUBO

$$
\begin{array}{llll}
S_{2} & I\left(__{-}\right) \longrightarrow_{\max } & S_{1} \\
S_{2} & v\left(__{-}\right) \longrightarrow_{\max } & S_{1}
\end{array}
$$

In the same step all $I()$ and $v()$ that serve as promoters are erased.

cP systems and QUBO

The second phase

The idea of the second phase is to generate objects $p()$, which will contain representatives of quadratic elements that will be multiplied by the coefficients of one (say the i-th) row of the matrix Q. However, if the value of the variable x_{i} is zero, the generation of the row is omitted since its value will be zero.

cP systems and QUBO

$\vec{x}=(1,1,1)-m()$ will contain the following objects:

$$
\begin{array}{lllll}
p(w(\lambda) & a(i n(\lambda) \text { val }(1)) & a(i n(1) \text { val }(1)) & a(i n(11) v a l(1)) &) \\
p(w(1) & a(i n(1) v a l(1)) & a(i n(11) v a l(1)) &) \\
p(w(11) & & a(i n(11) v a l(1)) &)
\end{array}
$$

x_{0}	x_{0}	x_{1}	x_{2}
x_{1}		x_{1}	x_{2}
x_{2}			x_{2}

cP systems and QUBO

$\vec{x}=(1,0,1)-m()$ will contain the following objects:
$p(w(\lambda) \quad a(i n(\lambda) v a l(1)) \quad a(i n(1) v a l(\lambda)) \quad a(i n(11) v a l(1)))$
$p(w(1)$
$p(w(11)$
$a(i n(11) \operatorname{val}(1)) \quad)$

x_{0}	x_{0}	x_{1}	x_{2}
$x_{1}=0$		x_{1}	x_{2}
x_{2}			x_{2}

cP systems and QUBO

The third phase

In the third phase, for each combination of non-zero values of $x_{i} x_{j}$, we will add the value of the coefficient $q_{i j}$ to the result in the object $l()$. After that we convert all values to canonical form. If there is at least one negative number we search for the maximum of negative numbers, if there is no negative number we search for the minimum of positive numbers (and zero).

cP systems and QUBO

adding the number $q_{X Y}$ if both x_{X} and x_{Y} are 1

$$
\begin{array}{r}
S_{4} \quad I\left(r\left(+\left(U^{\prime}\right)-\left(V^{\prime}\right)\right) p(w(X) a(\operatorname{in}(Y) \operatorname{val}(1)) Z) Z^{\prime} C_{1}(X)\right) \\
\longrightarrow \max ^{\longrightarrow} \quad S_{4} \quad I\left(r\left(+\left(U U^{\prime}\right)-\left(V V^{\prime}\right)\right) p(w(X) Z) Z^{\prime} C_{1}(X)\right) \\
\end{array}
$$

cP systems and QUBO

$$
\begin{aligned}
& S_{4} \quad I\left(p(w(X) a(i n(Y) v a l()) Z) Z^{\prime} C_{1}(X)\right) \\
& \longrightarrow_{\max } S_{4} \quad I\left(p(w(X) Z) Z^{\prime} C_{1}(X)\right) \\
& \mid q\left(i n 1(X) \operatorname{in2}(Y) \operatorname{val}\left(Z^{\prime \prime}\right)\right)
\end{aligned}
$$

cP systems and QUBO

Normalisation:

$$
\begin{aligned}
& S_{5} I\left(r(+(X Y)-(Y))_{-}\right) \quad \longrightarrow_{\max } \quad S_{6} \quad I\left(r(+(X)-(\lambda))_{-}\right) \\
& S_{5} I\left(r(+(X)-(X Y))_{-}\right) \quad \longrightarrow_{\max } \quad S_{6} \quad I\left(r(+(\lambda)-(Y))_{-}\right)
\end{aligned}
$$

cP systems and QUBO

Finding maximum of negative part of $r()$

$$
\begin{aligned}
S_{7} \longrightarrow_{\min } S_{F} \quad \operatorname{res}(\operatorname{val}(+(\lambda)-(X)) Z) & \\
& \mid I(r(+(\lambda)-(X)) Z) \\
& \neg /\left(r(+(\lambda)-(X 1 Y)) _\right)
\end{aligned}
$$

cP systems and QUBO

To find a minimum of positive and zero values we need to add one to the content of +() so the value of each $r()$ is at least one. Then we find a minimum of positive parts of $r() \mathrm{s}$.
$S_{8} \quad I(r(+(X)-(\lambda)) Z) \longrightarrow_{\max } \quad S_{9} \quad I(r(+(X 1)-(\lambda)) Z)$
$S_{9} \quad \longrightarrow_{\min } \quad S_{F} \quad \operatorname{res}(\operatorname{val}(+(X)-(\lambda)) Z)$

$$
\begin{array}{r}
\mid I(r(+(1 X)-(\lambda)) Z) \\
\neg(X=Y W) I\left(r(+(Y)-(\lambda))_{-}\right)
\end{array}
$$

Questions? Comments?

Thank you for your attention!

